一種支持硬件加速的虛擬網(wǎng)絡(luò)功能部署模型
doi: 10.11999/JEIT180861 cstr: 32379.14.JEIT180861
-
國(guó)家數(shù)字交換系統(tǒng)工程技術(shù)研究中心 ??鄭州 ??450002
基金項(xiàng)目: 國(guó)家網(wǎng)絡(luò)空間安全專(zhuān)項(xiàng)基金(2017YFB0803204),國(guó)家自然科學(xué)基金(61521003)
A Model for Virtualized Network Function Placement with Hardware Acceleration Support
-
National Digital Switching System Engineering & Research Center, Zhengzhou 450002, China
Funds: The National Network Security Special Program of China (2017YFB0803204), The National Natural Science Foundation of China (61521003)
-
摘要: 為解決以軟件實(shí)現(xiàn)的虛擬網(wǎng)絡(luò)功能(VNF)性能受限問(wèn)題,軟件定義網(wǎng)絡(luò)和網(wǎng)絡(luò)功能虛擬化(SDN/NFV)等新型網(wǎng)絡(luò)架構(gòu)引入了硬件加速資源。硬件加速資源的部署,使得VNF能夠?yàn)槿找嬖鲩L(zhǎng)的數(shù)據(jù)流量提供服務(wù)保障。該文針對(duì)已有研究未考慮具有高性能數(shù)據(jù)處理需求的服務(wù)鏈VNF部署問(wèn)題,提出一種支持硬件加速的VNF部署模型。該模型基于硬件加速資源的承載特性,在保證未加速VNF到商用服務(wù)器的優(yōu)化部署下,優(yōu)先實(shí)現(xiàn)交換機(jī)中加速資源的復(fù)用,并根據(jù)網(wǎng)絡(luò)業(yè)務(wù)的性能需求,靈活調(diào)整加速資源與VNF的映射約束。仿真實(shí)驗(yàn)表明,與其他典型部署方法相比,在引入相同硬件加速資源的情況下,該模型可以承載更多的業(yè)務(wù)流量,滿(mǎn)足服務(wù)鏈高性能數(shù)據(jù)處理需求,有效提高了部署在網(wǎng)絡(luò)中加速硬件的資源利用率。
-
關(guān)鍵詞:
- 軟件定義網(wǎng)絡(luò) /
- 網(wǎng)絡(luò)功能虛擬化 /
- 虛擬網(wǎng)絡(luò)功能部署 /
- 硬件加速
Abstract: In order to deal with the limited capacity of Virtualized Network Function (VNF), hardware acceleration resources are adopted in Software-Defined Networking and Network Function Virtualization (SDN/NFV) architecture. The deployment of hardware acceleration resources enables VNF to provide service guarantees for increasing data traffic. To overcome the ignorance of the requirements for VNF with high processing throughput in service chain in existing researches, a model for VNF placement with hardware acceleration support is proposed. Based on the bearing characteristics of hardware acceleration resources, the model prioritizes the reuse of acceleration resources in the switch under the optimal placement of VNF without acceleration to commercial servers. The mapping correlation between hardware acceleration resources and VNF is flexibly adjusted according to the requirements of network services. Simulation results show that the proposed model can bear more service flows and meet the high processing throughput needs of service chains than typical policies in the case of the same amount of resources, which improves effectively the resource utilization of the acceleration hardware deployed in the network. -
表 1 HMRP算法
輸入:服務(wù)請(qǐng)求集合D,底層網(wǎng)絡(luò)G,VNF參數(shù)集合F 輸出:VNF部署方案Pd (1) 根據(jù)服務(wù)請(qǐng)求${d_i}$,更新底層網(wǎng)絡(luò)$G\ '$ (2) for x←1 to |S| do //搜索網(wǎng)絡(luò)中轉(zhuǎn)發(fā)節(jié)點(diǎn) (3) s_temp←${o_i}$, g*←0, $\left\{ {{s^*}} \right\} \leftarrow \varPhi $; //初始化搜索節(jié)點(diǎn)、鏈路約束和復(fù)用節(jié)點(diǎn)集合 (4) find $(s|\alpha \left( {a,s} \right) = 1)$, update g*; //從${o_i}$出發(fā)搜索含有${A_s}$的交換節(jié)點(diǎn),并更新鏈路約束 (5) if $\varepsilon ({f_{i',j'}},s)$==1 && ${f_{i',j'}}{\rm{ = }}{f_{i,j}}$ && ${H_{s,a}} > {c_{n,s}}\left( {{f_{i,j}}} \right)$ && $\left| {{o_i},s} \right| \le j \cdot \theta {g^*}$ then //s 滿(mǎn)足復(fù)用約束 (6) {s*}←s ; //將復(fù)用s 加入{$s^*$} (7) if $\left\{ {{s^*}} \right\} = \varPhi $ then (8) reset空白交換節(jié)點(diǎn)$\left(s|\sum {\gamma (f,s) = 0} \right)$ to {$s^*$}; //將搜索到的空白交換節(jié)點(diǎn)置入{$s^*$} (9) deploy (${f_{i,j}} \in {F_{As}}$, {$s^*$}), addroute (${P_i}$, {$s^*$}); //構(gòu)造初始路徑 (10) for v←1 to S *+1 do // ${P_i}$分為S *+1段子路徑,${L_i}$分為S *+1個(gè)子集 (11) if $\left\{ {{f_{i,j}} \in {F_{An}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then (12) deploy (${f_{i,j}} \in {F_{An}}$, ($n|\alpha \left( {a,n} \right) = 1, \; \beta \left( {n,s} \right) = 1, \; s \in {p_{i,v}}$)); //優(yōu)先部署各子集中加速功能到加速卡 (13) deploy (${q_v}\left| {{\rm{ max}}\left( {{q_j}} \right), \; (n,s} \right|s \in {p_{i,v}},\beta \left( {n,s} \right) = 1 )$); //部署功能最多的方案到子路徑上 (14) if $\left\{ {{f_{i,j}} \in {F_{As}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then //若各子集中仍有未部署的加速表網(wǎng)絡(luò)功能 (15) deploy (${f_{i,j}} \in {F_{As}}, \; (n|\alpha (a,n) = 1, \; \beta \left( {n,s} \right) = 1, \; s \in {p_{i,v}})$); //放寬加速功能映射位置 (16) if $\left\{ {{f_{i,j}} \in {F_{As}} \cup {F_{An}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then //仍有未部署的加速網(wǎng)絡(luò)功能 (17) reject ${d_i}$; //拒絕該服務(wù)請(qǐng)求 (18) break; (19) First-fit_deploy (${f_{i,j}} \in {L_i},n$); //利用First-Fit部署剩余網(wǎng)絡(luò)功能 下載: 導(dǎo)出CSV
表 2 VNF資源參數(shù)
VNF類(lèi)型 1 2 3 4 5 6 7 8 9 10 11 計(jì)算存儲(chǔ)資源開(kāi)銷(xiāo)cn 3 4 6 5 5 2 7 6 4 7 5 加速表資源開(kāi)銷(xiāo)${c_{s,a}}$ 2 3 – 5 2 3 – 4 2 – 2 加速卡資源開(kāi)銷(xiāo)${c_{n,a}}$ 1 1 33 2 1 2 2 2 1 3 1 下載: 導(dǎo)出CSV
-
HONG Chiyao, CAESAR M, and GODFREY P B. Finishing flows quickly with preemptive scheduling[C]. ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki, Finland, 2012: 127–138. BOURAS C, KOLLIA A, and PAPAZOIS A. SDN & NFV in 5G: advancements and challenges[C]. The 20th Conference on Innovations in Clouds, Internet and Networks, Paris, France, 2017: 107–111. HAN Bo, GOPALAKRISHNAN V, JI Lusheng, et al. Network function virtualization: challenges and opportunities for innovations[J]. IEEE Communications Magazine, 2015, 53(2): 90–97. doi: 10.1109/MCOM.2015.7045396 MATIAS J, GARAY J, TOLEDO N, et al. Toward an SDN-enabled NFV architecture[J]. IEEE Communications Magazine, 2015, 53(4): 187–193. doi: 10.1109/MCOM.2015.7081093 BI Jun, ZHU Shuyong, SUN Chen, et al. Supporting virtualized network functions with stateful data plane abstraction[J]. IEEE Network, 2016, 30(3): 40–45. doi: 10.1109/MNET.2016.7474342 YI Xiaodong, DUAN Jingpu, and WU Chuan. GPUNFV: A GPU-accelerated NFV system[C]. The 1st Asia-Pacific Workshop on Networking, Hong Kong, China, 2017: 85–91. SONG Haoyu. Protocol-oblivious forwarding: unleash the power of SDN through a future-proof forwarding plane[C]. The 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 2013: 127–132. LI Bojie, TAN Kun, LUO Layong, et al. ClickNP: Highly flexible and high performance network processing with reconfigurable hardware[C]. 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 1–14. LI Xiaoyao, WANG Xiuxiu, LIU Fangming, et al. DHL: Enabling flexible software network functions with FPGA acceleration[C]. The IEEE 38th International Conference on Distributed Computing Systems, Vienna, Austria, 2018: 1–11. SUN Jian, ZHU Guangyang, SUN Gang, et al. A reliability-aware approach for resource efficient virtual network function deployment[J]. IEEE Access, 2018, 6: 18238–18250. doi: 10.1109/ACCESS.2018.2815614 KUO Tungwei, LIOU Bangheng, LIN K C J, et al. Deploying chains of virtual network functions: on the relation between link and server usage[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524565. 陳卓, 馮鋼, 劉蓓, 等. 運(yùn)營(yíng)商網(wǎng)絡(luò)中面向資源碎片優(yōu)化的網(wǎng)絡(luò)服務(wù)鏈構(gòu)建策略[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 763–769. doi: 10.11999/JEIT170641CHEN Zhuo, FENG Gang, LIU Bei, et al. Construction policy of network service chain oriented to resource fragmentation optimization in operator network[J]. Journal of Electronics &Information Technology, 2018, 40(4): 763–769. doi: 10.11999/JEIT170641 ZENG Chaobing, LIU Fangming, CHEN Shutong, et al. Demystifying the performance interference of co-located virtual network functions[C]. 2018 IEEE Conference on Computer Communications, Honolulu, USA, 2018: 765–773. 湯紅波, 袁泉, 盧干強(qiáng), 等. 一種支持節(jié)點(diǎn)分割的vEPC虛擬網(wǎng)絡(luò)功能部署模型[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 546–553. doi: 10.11999/JEIT160507TANG Hongbo, YUAN Quan, LU Ganqiang, et al. A model for virtualized network function deployment based on node-splitting in vEPC[J]. Journal of Electronics &Information Technology, 2017, 39(3): 546–553. doi: 10.11999/JEIT160507 FENG Hao, LLORCA J, TULINO A M, et al. Approximation algorithms for the NFV service distribution problem[C]. 2017 IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437 SUN Chen, BI Jun, ZHENG Zhilong, et al. NFP: Enabling network function parallelism in NFV[C]. Conference of the ACM Special Interest Group on Data Communication, Los Angeles, USA, 2017: 43–56. MIJUMBI R, SERRAT J, GORRICHO J L, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C]. The 2015 1st IEEE Conference on Network Softwarization, London, UK, 2015: 1–9. ZILBERMAN N, AUDZEVICH Y, KALOGERIDOU G, et al. NetFPGA: rapid prototyping of networking devices in open source[C]. 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 2015: 363–364. GE Xiongzi, LIU Yi, DU D H C, et al. OpenANFV: Accelerating network function virtualization with a consolidated framework in openstack[C]. 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 353–354. 段通, 蘭巨龍, 胡宇翔, 等. 面向SDN/NFV架構(gòu)的VNF硬件加速資源編排機(jī)制[J]. 通信學(xué)報(bào), 2018, 39(6): 98–108. doi: 10.11959/j.issn.1000-436x.2018108DUAN Tong, LAN Julong, HU Yuxiang, et al. Orchestration mechanism for VNF hardware acceleration resources in SDN/NFV architecture[J]. Journal on Communications, 2018, 39(6): 98–108. doi: 10.11959/j.issn.1000-436x.2018108 -