基于相鄰互相關(guān)函數(shù)-參數(shù)化中心頻率-調(diào)頻率分布-Keystone變換的無源雷達機動目標(biāo)相參積累方法
doi: 10.11999/JEIT180858 cstr: 32379.14.JEIT180858
-
解放軍戰(zhàn)略支援部隊信息工程大學(xué)數(shù)據(jù)與目標(biāo)工程學(xué)院 鄭州 ??450001
基金項目: 國家自然科學(xué)基金(61703433)
Coherent Integration Algorithm Based on Adjacent Cross Correlation Function-Parameterized Centroid Frequency-Chirp Rate Distribution -Keystone Transform for Maneuvering Target in Passive Radar
-
School of Data and Target Engineering, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
Funds: The National Natural Science Foundation of China (61703433)
-
摘要: 延長積累時間可以有效提高無源雷達的目標(biāo)探測能力,但是對于高速機動目標(biāo),其速度、加速度、第二加速度等因素導(dǎo)致現(xiàn)有的檢測算法在積累過程中發(fā)生距離徙動(RM)和多普勒頻率徙動(DFM),使得目標(biāo)檢測性能惡化。該文針對無源雷達中變加速運動目標(biāo)的長時間相參積累問題,提出一種基于相鄰互相關(guān)函數(shù)(ACCF)-參數(shù)化中心頻率-調(diào)頻率分布(PCFCRD)-Keystone變換(KT)的相參積累算法(ACCF-PCFCRD-KT)。首先給出無源雷達中變加速運動目標(biāo)的回波模型,分析了目標(biāo)速度、加速度和第二加速度對相參積累的影響。針對目標(biāo)第二加速度引起的多普勒頻率彎曲,采用ACCF降低了距離和多普勒頻率徙動的階數(shù),而后利用PCFCRD估計出目標(biāo)加速度和第二加速度參數(shù),在補償了目標(biāo)加速度和第二加速度引起的2次和3次徙動后,利用KT校正目標(biāo)速度引起的線性徙動,并實現(xiàn)目標(biāo)回波的積累。仿真結(jié)果表明,該算法可有效補償無源雷達中目標(biāo)運動導(dǎo)致的RM和DFM,對變加速機動目標(biāo)的積累效果顯著優(yōu)于現(xiàn)有算法。
-
關(guān)鍵詞:
- 無源雷達 /
- 相參積累 /
- 機動目標(biāo) /
- 相鄰互相關(guān)函數(shù) /
- 參數(shù)化中心頻率調(diào)頻斜率分布 /
- Keystone變換
Abstract: Increasing the integration time can effectively improve the detection performance of passive radar. However, for maneuvering targets, the complex motions, such as high velocity, acceleration and jerk, cause existing detection methods to suffer the Range Migration (RM) and Doppler Frequency Migration (DFM) during the integration time, which deteriorates the detection performance. This paper addresses the long time coherent integration for a maneuvering target with high-order motion (e.g., jerk motion) in passive radar systems. A method based on Adjacent Cross Correlation Function (ACCF), Parameterized Centroid Frequency-Chirp Rate Distribution (PCFCRD) and Keystone Transform (KT)(ACCF-PCFCRD-KT), is proposed. Firstly, the signal model for the maneuvering targets is given, and the influence of the target velocity, acceleration and jerk on the coherent integration is analyzed. For the Doppler curvature induced by the jerk motion, the ACCF is firstly applied to reducing the order of RM and DFM. Then the PCFCRD operation is employed to estimate the acceleration and jerk parameters. After compensating the RM and DFM caused by the acceleration and jerk, the RM arising from the velocity is corrected via the KT operation and the target echo energy is coherently integrated. Simulation results demonstrate that the proposed method can effectively compensate the RM and DFM caused by the target motion parameters in passive radar, and for a maneuvering target with jerk motion, the proposed method achieves better integration performance over the existing methods. -
ZAIMBASHI A. Target detection in analog terrestrial TV-based passive radar sensor: joint delay-Doppler estimation[J]. IEEE Sensors Journal, 2017, 17(17): 5569–5580. doi: 10.1109/JSEN.2017.2725822 ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. A novel algebraic solution for moving target localization in multi-transmitter multi-receiver passive radar[J]. Signal Processing, 2018, 143: 303–310. doi: 10.1016/j.sigpro.2017.09.014 WANG Yasen, BAO Qinglong, WANG Dinghe, et al. An experimental study of passive bistatic radar using uncooperative radar as a transmitter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1868–1872. doi: 10.1109/LGRS.2015.2432574 OLSEN K E and ASEN W. Bridging the gap between civilian and military passive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 4–12. doi: 10.1109/MAES.2017.160030 GASSIER G, CHABRIEL G, BARRèRE J, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5959–5971. doi: 10.1109/TSP.2016.2600511 COLONE F, O'HAGAN D W, LOMBARDO P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 698–722. doi: 10.1109/TAES.2009.5089551 HIGGINS T, WEBSTER T, and MOKOLE E L. Passive multistatic radar experiment using WiMAX signals of opportunity. Part 1: Signal processing[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 238–247. doi: 10.1049/iet-rsn.2015.0020 ZHU Daiyin, LI Yong, and ZHU Zhaoda. A Keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147 YU Ji, XU Jia, PENG Yingning, et al. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044 RAO Xuan, TAO Haihong, SU Jia, et al. Detection of constant radial acceleration weak target via IAR-FRFT[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3242–3253. doi: 10.1109/TAES.2015.140739 LI Xiaolong, CUI Guolong, YI Wei, et al. Radar maneuvering target detection and motion parameter estimation based on TRT-SGRFT[J]. Signal Processing, 2017, 133: 107–116. doi: 10.1016/j.sigpro.2016.10.014 MALANOWSKI M. Detection and parameter estimation of manoeuvring targets with passive bistatic radar[J]. IET Radar, Sonar & Navigation, 2012, 6(8): 739–745. doi: 10.1049/iet-rsn.2012.0072 關(guān)欣, 胡東輝, 仲利華, 等. 一種高效的外輻射源雷達高徑向速度目標(biāo)實時檢測方法[J]. 電子與信息學(xué)報, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903GUAN Xin, HU Donghui, ZHONG Lihua, et al. An effective real-time target detection algorithm for high radial speed targets in passive radar[J]. Journal of Electronics &Information Technology, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903 楊金祿, 單濤, 陶然. 數(shù)字電視輻射源雷達的相參積累徙動補償方法[J]. 電子與信息學(xué)報, 2011, 33(2): 407–411. doi: 10.3724/SP.J.1146.2010.00414YANG Jinlu, SHAN Tao, and TAO Ran. Method of migration compensation in coherent integration for digital TV based passive radar[J]. Journal of Electronics &Information Technology, 2011, 33(2): 407–411. doi: 10.3724/SP.J.1146.2010.00414 楊宇翔, 同武勤, 熊瑾煜. 一種無源雷達高速機動目標(biāo)檢測新方法[J]. 電子與信息學(xué)報, 2014, 36(12): 3008–3013. doi: 10.3724/SP.J.1146.2013.01984YANG Yuxiang, TONG Wuqin, and XIONG Jinyu. A novel algorithm for detection of a maneuvering target in passive radar[J]. Journal of Electronics &Information Technology, 2014, 36(12): 3008–3013. doi: 10.3724/SP.J.1146.2013.01984 XU Jia, ZHOU Xu, QIAN Lichang, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2554–2561. doi: 10.1109/TAES.2016.150076 LI Yachao, XING Mengdao, SU Junhai, et al. A new algorithm of ISAR imaging for maneuvering targets with low SNR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 543–557. doi: 10.1109/TAES.2013.6404119 LI Xiaolong, CUI Guolong, YI Wei, et al. A fast maneuvering target motion parameters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3): 270–274. doi: 10.1109/LSP.2014.2358230 ZHENG Jibin, LIU Hongwei, and LIU Qinghuo. Parameterized centroid frequency-chirp rate distribution for LFM signal analysis and mechanisms of constant delay introduction[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6435–6446. doi: 10.1109/TSP.2017.2755604 MALANOWSKI M, KULPA K, KULPA J, et al. Analysis of detection range of FM-based passive radar[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 153–159. doi: 10.1049/iet-rsn.2013.0185 -