基于差族構(gòu)造高斯整數(shù)周期互補(bǔ)序列
doi: 10.11999/JEIT180646 cstr: 32379.14.JEIT180646
-
1.
燕山大學(xué)信息科學(xué)與工程學(xué)院 ??秦皇島 ??066004
-
2.
河北省信息傳輸與信號(hào)處理重點(diǎn)實(shí)驗(yàn)室 ??秦皇島 ??066004
Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families
-
1.
School of Information Science & Engineering, Yanshan University, Qinhuangdao 066004, China
-
2.
Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
-
摘要:
該文給出了基于差族的高斯整數(shù)互補(bǔ)序列構(gòu)造方法。利用差族與互補(bǔ)序列之間的聯(lián)系,首先推導(dǎo)出高斯整數(shù)互補(bǔ)序列存在的充分條件,進(jìn)而直接構(gòu)造了階數(shù)為2的高斯整數(shù)互補(bǔ)序列。為進(jìn)一步增加高斯整數(shù)互補(bǔ)序列數(shù)目,又利用映射方法構(gòu)造了階數(shù)為4的高斯整數(shù)互補(bǔ)序列。同傳統(tǒng)的2元互補(bǔ)序列相比,高斯整數(shù)互補(bǔ)序列的存在數(shù)目很多,因此該文方法可以為通信系統(tǒng)提供大量的互補(bǔ)序列。
-
關(guān)鍵詞:
- 高斯整數(shù)序列 /
- 差族 /
- 周期互補(bǔ) /
- 互補(bǔ)序列對(duì)
Abstract:Constructions of Gaussian integer periodic complementary sequences are presented in this paper. Based on the relationship between periodic complementary sequences and difference families, the sufficient condition of the existence of Gaussian integer periodic complementary sequences is proposed at first, then Gaussian integer periodic complementary sequences with degree 2 are constructed directly. To extend the number of Gaussian integer complementary sequences, Gaussian integer complementary sequences with degree 4 are constructed based on mappings. Compared with binary complementary sequences, there are more Gaussian integer complementary sequences, as a result, the presented methods will propose an abundance of complementary sequences for communication systems.
-
表 1 滿足式(6)的高斯整數(shù)
${\alpha _0}$ ${\alpha _1}$ ${\beta _0}$ ${\beta _1}$ –2 –1 1 0 –2 –1 1 2 –2 1 1 –2 –2 1 1 0 –1 –2 0 1 –1 –2 2 1 –1 2 0 –1 –1 2 2 –1 1 –2 –2 1 1 –2 0 1 1 2 –2 –1 1 2 0 –1 2 –1 –1 0 2 –1 –1 2 2 1 –1 –2 下載: 導(dǎo)出CSV
-
WANG Senhung and LI Chihpeng. Novel comb spectrum CDMA system using perfect Gaussian integer sequences[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 2015: 1–6. CHANG Ho Hsuan, LIN Shieh Chiang and LEE Chongdao. A CDMA scheme based on perfect Gaussian integer sequences[J]. International Journal of Electronics and Communications, 2017, 75(2017): 70–81. doi: 10.1016/j.aeue.2017.03.008 WANG Senhung, LI Chihpeng, and CHANG Hohsuan, et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016, 64(1): 365–376. doi: 10.1109/TCOMM.2015.2498185 LI Chihpeng, WANG Senhung, and WANG Chinliang. Novel low complexity SLM schemes for PAPR reduction in OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2916–2921. doi: 10.1109/TSP.2010.2043142 HU Weiwen, WANG Senhung, and LI Chihpeng. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074–6079. doi: 10.1109/TSP.2012.2210550 YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615–618. doi: 10.1109/LSP.2012.2209642 MA Xiu Wen, WEN Qiao Yan, ZHANG Jie, et al. New perfect Gaussian integer sequences of periodic pq[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(11): 2290–2293. doi: 10.1587/transfun.E96.A.2290 PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2015, 22(8): 1040–1044. doi: 10.1109/LSP.2014.2381642 CHANG Hohsuan, LI Chihpeng, LEE Chongdao, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107–4115. doi: 10.1109/TIT.2015.2438828 CHEN Xinjiao, LI Chunlei, and RONG Chunming. Perfect Gaussian integer sequences from cyclic difference sets[C]. 2016 IEEE International Symposium on Information Theory (ISIT), 2016: 115–119. LEE Chongdao, HUANG Yupei, CHANG Yaostu, et al. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881–885. doi: 10.1109/LSP.2014.2375313 Lee Chongdao, LI Chihpeng, and CHANG Hohsuan, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542–1552. doi: 10.1049/iet-com.2015.1144 陳曉玉, 許成謙, 李玉博. 新的完備高斯整數(shù)序列的構(gòu)造方法[J]. 電子與信息學(xué)報(bào), 2014, 36(9): 2081–2085. doi: 10.3724/SP.J.1146.2013.01697CHEN Xiaoyu, XU Chengqian, and LI Yubo. New Constructions of perfect Gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2081–2085. doi: 10.3724/SP.J.1146.2013.01697 LI Yubo, TIAN Liying, and LIU Tao. Nearly perfect Gaussian integer sequences with arbitrary degree[J]. IET Communications, 2018, 12(9): 1123–1127. doi: 10.1049/iet-com.2017.1274 LI Chihpeng, CHANG Kuojen, CHANG Hohsuan, et al. Perfect sequences of odd prime length[J]. IEEE Signal Processing Letters, 2018, 25(7): 966–969. doi: 10.1109/LSP.2018.2832719 柯品惠, 胡電芬, 常祖領(lǐng). 周期為p2的完備高斯整數(shù)序列的新構(gòu)造[J]. 工程數(shù)學(xué)學(xué)報(bào), 2018, 35(3): 319–328. doi: 10.3969/j.issn.1005-3085.2018.03.007KE Pinhui, HU Dianfen, and CHANG Zuling. New construction of perfect Gaussian integer sequence with period p2[J]. Chinese Journal of Engineering Mathematics, 2018, 35(3): 319–328. doi: 10.3969/j.issn.1005-3085.2018.03.007 劉凱, 姜昆. 交織法構(gòu)造高斯整數(shù)零相關(guān)區(qū)序列集[J]. 電子與信息學(xué)報(bào), 2017, 39(2): 328–334. doi: 10.11999/JEIT160276LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics &Information Technology, 2017, 39(2): 328–334. doi: 10.11999/JEIT160276 劉凱, 陳盼盼. 最佳及幾乎最佳高斯整數(shù)ZCZ序列集的構(gòu)造[J]. 電子學(xué)報(bào), 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034LIU Kai and CHEN Panpan. Constructions of optimal of almost optimal Gaussian integer ZCZ sequence sets[J]. Acta Electronica Sinica, 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034 BOMER Leopold and ANTWEILER Markus. Periodic complementary binary sequences[J]. IEEE Transactions on Information Theory, 1990, 36(6): 1487–1494. doi: 10.1109/18.59954 TSENG Chin-Chong. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860 LI Xudong, LIU Zilong, GUAN Yongliang, et al. Two valued periodic complementary sequences[J]. IEEE Signal Processing Letters, 2017, 24(9): 1270–1274. doi: 10.1109/LSP.2017.2722423 DING Cunsheng. Two Constructions of (v, (v-1)/2, (v-3)/2) difference families[J]. Journal of Combinatorial Designs, 2008, 16: 164–171. doi: 10.1002/jcd.20159 -
計(jì)量
- 文章訪問(wèn)數(shù): 1728
- HTML全文瀏覽量: 699
- PDF下載量: 56
- 被引次數(shù): 0