一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于隨機學習的接入網(wǎng)服務功能鏈部署算法

陳前斌 楊友超 周鈺 趙國繁 唐倫

陳前斌, 楊友超, 周鈺, 趙國繁, 唐倫. 基于隨機學習的接入網(wǎng)服務功能鏈部署算法[J]. 電子與信息學報, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310
引用本文: 陳前斌, 楊友超, 周鈺, 趙國繁, 唐倫. 基于隨機學習的接入網(wǎng)服務功能鏈部署算法[J]. 電子與信息學報, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310
Qianbin CHEN, Youchao YANG, Yu ZHOU, Guofan ZHAO, Lun TANG. Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning[J]. Journal of Electronics & Information Technology, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310
Citation: Qianbin CHEN, Youchao YANG, Yu ZHOU, Guofan ZHAO, Lun TANG. Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning[J]. Journal of Electronics & Information Technology, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310

基于隨機學習的接入網(wǎng)服務功能鏈部署算法

doi: 10.11999/JEIT180310 cstr: 32379.14.JEIT180310
基金項目: 國家自然科學基金(61571073)
詳細信息
    作者簡介:

    陳前斌:男,1967年生,教授,博士生導師,主要研究方向為個人通信、多媒體信息處理與傳輸、下一代移動通信網(wǎng)絡

    楊友超:男,1993年生,碩士生,研究方向為網(wǎng)絡虛擬化和切片資源分配

    周鈺:男,1993年生,碩士生,研究方向為切片資源分配和深度學習

    趙國繁:女,1993年生,碩士生,研究方向為5G網(wǎng)絡切片中的資源分配、可靠性

    唐倫:男,1973年生,教授,博士生導師,主要研究方向為新一代無線通信網(wǎng)絡、異構(gòu)蜂窩網(wǎng)絡

    通訊作者:

    陳前斌 chenqb@cqupt.edu.cn

  • 中圖分類號: TN929.5

Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning

Funds: The National Natural Science Foundation of China (61571073)
  • 摘要:

    針對5G云化接入網(wǎng)場景下物理網(wǎng)絡拓撲變化引起的高時延問題,讀文提出一種基于部分觀察馬爾可夫決策過程(POMDP)部分感知拓撲的接入網(wǎng)服務功能鏈(SFC)部署方案。該方案考慮在5G接入網(wǎng)C-RAN架構(gòu)下,通過心跳包觀測機制感知底層物理網(wǎng)絡拓撲變化,由于存在觀測誤差無法獲得全部真實的拓撲情況,因此采用基于POMDP的部分感知和隨機學習而自適應動態(tài)調(diào)整接入網(wǎng)切片的SFC的部署,優(yōu)化SFC在接入網(wǎng)側(cè)的時延。為了解決維度災問題,采用基于點的混合啟發(fā)式值迭代算法求解。仿真結(jié)果表明,該模型可以優(yōu)化部署接入網(wǎng)側(cè)的SFC,并提高接入網(wǎng)吞吐量和資源利用率。

  • 圖  1  系統(tǒng)模型

    圖  2  接入網(wǎng)VNF部署方式

    圖  3  3種SFC部署方案的吞吐量

    圖  4  3種SFC資源分配算法方案的資源利用率

    圖  5  3種POMDP求解算法對比

    圖  6  3個切片的接入網(wǎng)VNF部署方式統(tǒng)計圖

    表  1  算法1:更新探索信念點集合${{{B}_{\rm su}$

     (1) 用式(13)計算被擴點集${B^{{\rm pr}}$
     (2) for all ${} \in {B^{{\rm pr}}$ do
     (3) 用式(14)計算su$({})$
     (4) 用式(15)計算離${B_{{\rm su}}$最遠的后繼信念點${{}''}$
     (5) end for
     (6) 清空集合${V'}$的元素
     (7) for all ${} \in {B_{{\rm su}}$ do
     (8) 用式(17)計算下界向量${{{α}} _{}$并加入${V'}$中
     (9) end for
     (10) 將下界集合$\underline V $ 更新為${V'}$
     (11) for all ${} \in {B_{{\rm su}}$ do
     (12) ${V_{{{co}}} \leftarrow \{ {}|\exists s \in S,b(s) = 1\} $
     (13) ${v^0_{}\leftarrow \displaystyle\sum\limits_{{b'} \in {V_{\rm co}}} {v({{}'}) \cdot {}} $
     (14) for all $ < {b_i},{v_i} > \in {B_{{\rm su}} - {V_{{\rm co}}$ do
     (15) $c({b_i}) \leftarrow \mathop {\min }\limits_{s \in S} \frac{{b(s)}}{{{b_i}(s)}}$
     (16) $f({b_i}) \leftarrow {v_i} - \sum\limits_{{'} \in {V_{{\rm co}}}} {v({{'}){b_i}(s)} $
     (17) end for
     (18) $v \leftarrow {v^0_} + \mathop {\displaystyle\min }_i c({b_i})f({b_i})$并將點值對$ < {},v > $加入上界集合$\mathop { V}\limits\!\!\!\!^{\displaystyle{-} } $
     (19) end for
    下載: 導出CSV

    表  2  算法2:基于${{{B}_{{\rm su}}$更新值函數(shù)向量集${{{Γ} _{{{t +}}1}$

     (1) for all ${} \in {B_{{{\rm su}}$ do
     (2) 向量集合${{{Γ} _{t + 1,\chi }} \leftarrow \varnothing $
     (3) for all $a \in A$ do
     (4) 向量${{{Γ} _{t + 1,\beta }} \leftarrow 0$
     (5) for all $z \in Z$ do
     (6) 用式(18)計算${{Γ} _{t + 1}^{a,z}$
     (7) ${{{Γ} _{t + 1,\beta }} \leftarrow \mathop {\arg \max }_{{α} \in {{Γ} _{t + 1}^{a,z}}} {} \cdot {{α}} + {{Γ} _1^a$
     (8) end for
     (9) 將向量${{{Γ} _{t + 1,\beta }}$加入集合${{{Γ} _{t + 1,\chi }}$中
     (10) end for
     (11) 將${{{Γ} _{t + 1,\chi }}$中與${}$相乘最大的向量加入${{{Γ} _{t + 1}}$
     (12) end for
    下載: 導出CSV
  • SHARMA S, MILLER R, and FRANCINI A. A cloud-native approach to 5G network slicing[J]. IEEE Communications Magazine, 2017, 55(8): 120–127. doi: 10.1109/MCOM.2017.1600942
    ZHANG Haijun, LIU Na, and CHU Xiaoli. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenge[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.217.1600940
    KATSALIS K, NIKAEIN N, and SCHILLER E. Network slices toward 5G communications: Slicing the LTE network[J]. IEEE Communications Magazine, 2017, 55(8): 146–154. doi: 10.1109/MCOM.2017.1600936
    FOUKAS X, PATOUNAS G, and ELMOKASHFI A. Network slicing in 5G: Survey and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 94–100. doi: 10.1109/MCOM.2017.1600951
    LI Xin and SAMAKA M. Network slicing for 5G: Challenges and opportunities[J]. IEEE Internet Computing, 2017, 21(5): 20–27. doi: 10.1109/MIC.2017.3481355
    MIJUMBI R, SERRAT J, and GORRICHO J L. Network function virtualization: state-of-the-art and research challenges[J]. IEEE Communications Surveys Tutorials, 2017, 18(1): 236–262. doi: 10.1109/COMST.2015.2477041
    GIL J H and BOTERO J F. Resource allocation in NFV: A comprehensive survey[J]. IEEE Transactions on Network and Service Management, 2016, 13(3): 518–532. doi: 10.1109/TNSM.2016.2598420
    HUANG Huawei and SONG Guo. Service chaining for hybrid network function[J]. IEEE Transactions on Cloud Computing, 2017. doi: 10.1109/TCC.2017.2721401
    QU Long, ASSI C, and SHABAN K. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
    MAHMOOD A M, AL-YASIRI A, and ALANI O Y K. A new processing approach for reducing computational complexity in cloud-RAN mobile networks[J]. IEEE Access, 2018, 6: 6927–6946. doi: 10.1109/ACCESS.2017.2782763
    CHIH I. RAN revolution with NGFI (xhaul) for 5G[J]. Journal of Lightwave Technology, 2018, 36(2): 541–550. doi: 10.1109/JLT.2017.2764
    ZHANG Nan, LIU Yafeng, and FARMANBAR H. Network slicing for service-oriented networks under resource constraints[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2512–2521. doi: 10.1109/JSAC.2017.2760147
    HAYASHIBARA N, DEFAGO X, and YARED R. The φ accrual failure detector[C]. IEEE International Symposium on Reliable Distributed Systems, Florianpolis, Brazil, 2014: 66–78.
    劉峰. 基于部分可觀察馬爾科夫決策過程的序列規(guī)劃問題的研究[D]. [博士論文], 南京大學, 2015.

    LIU Feng. A study of sequence planning based on partially observable markov decision process[D]. [Ph.D. dissertation], Nanjing University, 2015.
    CILDEN E and POLAT F. Toward generalization of automated temporal abstraction to partially observable reinforcement learning[J]. IEEE Transactions on Cybernetics, 2017, 45(8): 1414–1425. doi: 10.1109/TCYB.2014.2352038
    ZHENG Qiang, ZHENG Kan, ZHANG Haijun, et al. Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7857–7867. doi: 10.1109/TVT.2016.2538461
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數(shù):  1735
  • HTML全文瀏覽量:  880
  • PDF下載量:  63
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-09-03
  • 網(wǎng)絡出版日期:  2018-09-12
  • 刊出日期:  2019-02-01

目錄

    /

    返回文章
    返回