基于Stackelberg博弈的虛擬化無線傳感網絡資源分配策略
doi: 10.11999/JEIT180277 cstr: 32379.14.JEIT180277
-
1.
重慶郵電大學通信與信息工程學院 ??重慶 ??400065
-
2.
重慶高校市級光通信與網絡重點實驗室 ??重慶 ??400065
Stackelberg Game-based Resource Allocation Strategy in Virtualized Wireless Sensor Network
-
1.
School of Telecommunication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Optical Communication and Network Key Laboratory of Chongqing, Chongqing 400065, China
-
摘要:
虛擬化技術可有效緩解當前無線傳感網絡(WSN)中資源利用率較低、服務不靈活的問題。針對虛擬化WSN中的資源競爭問題,該文提出一種基于Stackelberg博弈的多任務資源分配策略。依據(jù)所承載業(yè)務的不同服務質量(QoS)需求,量化多個虛擬傳感網絡請求(VSNRs)的重要程度,進而,利用分布式迭代方法,獲取WSN的最優(yōu)價格策略和VSNRs的最優(yōu)資源需求量,最后,根據(jù)納什均衡所確定的最優(yōu)價格、最優(yōu)資源分配量,對多個VSNRs分配資源。仿真結果表明,所提策略不僅能滿足用戶的多樣化需求,而且提升了節(jié)點和鏈路資源利用率。
Abstract:Virtualization is a new technology that can effectively solve the low resource utilization and service inflexibility problem in the current Wireless Sensor Network (WSN). For the resource competition problem in virtualized WSN, a multi-task resource allocation strategy based on Stackelberg game is proposed. According to the different Quality of Service (QoS) requirements of the business carried by Virtual Sensor Network Request (VSNR), the importance of multiple VSNRs is quantified. Then, the optimal price of WSN and the optimal resource requirements of VSNRs are obtained by using distributed iteration method. Finally, the resource corresponding to multiple VSNRs is acquired according to optimal price and optimal resource allocation determined by Nash equilibrium. The simulation results show that the proposed strategy can not only meet the diversified needs of users, but also improve the resource utilization of nodes and links.
-
Key words:
- Wireless Sensor Network (WSN) /
- Virtualization /
- Resource allocation /
- Game theory
-
表 1 仿真參數(shù)設置
參數(shù)設定 參考數(shù)值 仿真區(qū)域(m2) 50×50 節(jié)點數(shù)量(個) 55 節(jié)點處理速度(bit/s) 16~32 節(jié)點存儲能力(kb) 4~15 節(jié)點能量(J) 2~4 鏈路帶寬(kb/s) 5~30 用戶體驗常量 1或2 VSNR資源需求策略調節(jié)步長 0.1 WSN價格策略調節(jié)步長 0.1 最大迭代次數(shù)/次 200 下載: 導出CSV
-
EZDIANI S, ACHARYYA I S, SIVAKUMAR S, et al. Wireless sensor network softwarization: Towards WSN adaptive QoS[J]. IEEE Internet of Things Journal, 2017, 4(5): 1517–1527. doi: 10.1109/JIOT.2017.2740423 LIAO Yizheng, MOLLINEAUX M, HSU R, et al. SnowFort: An open source wireless sensor network for data analytics in infrastructure and environmental monitoring[J]. IEEE Sensors Journal, 2014, 14(12): 4253–4263. doi: 10.1109/JSEN.2014.2358253 HU Xiaoya, YANG Liuqing, and XIONG Wei. A novel wireless sensor network frame for urban transportation[J]. IEEE Internet of Things Journal, 2015, 2(6): 586–595. doi: 10.1109/JIOT.2015.2475639 ALAIAD A and ZHOU Lina. Patients’ adoption of WSN-Based smart home healthcare systems: an integrated model of facilitators and barriers[J]. IEEE Transactions on Professional Communication, 2017, 60(1): 4–23. doi: 10.1109/TPC.2016.2632822 PARK P, MARCO P D, and JOHANSSON K H. Cross-layer optimization for industrial control applications using wireless sensor and actuator mesh networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3250–3259. doi: 10.1109/TIE.2016.2631530 KHAN I, BELQASMI F, GLITHO R, et al. Wireless sensor network virtualization: Early architecture research perspectives[J]. IEEE Network, 2015, 29(3): 104–112. doi: 10.1109/MNET.2015.7113233 KHAN I, BELQASMI F, GLITHO R, et al. Wireless sensor network virtualization: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 553–576. doi: 10.1109/COMST.2015.2412971 GUO Lei, NING Zhaolong, SONG Qingyang, et al. A QoS-oriented high-efficiency resource allocation scheme in wireless multimedia sensor networks[J]. IEEE Sensors Journal, 2017, 17(5): 1538–1548. doi: 10.1109/JSEN.2016.2645709 DELGADO C, BOUSNINA S, CESANA M, et al. On optimal resource allocation in virtual sensor networks[J]. Ad Hoc Networks, 2016, 50(C): 23–40. doi: 10.1016/j.adhoc.2016.04.004 DELGADO C, CANALES M, ORTIN J, et al. Joint application admission control and network slicing in virtual sensor networks[J]. IEEE Internet of Things Journal, 2017, 5(1): 28–43. doi: 10.1109/JIOT.2017.2769446 OBELE B O, IFTIKHAR M, MANIPORNSUT S, et al. Analysis of the behavior of self-similar traffic in a QoS-aware architecture for integrating WiMAX and GEPON[J]. Journal of Optical Communication and Network, 2009, 1(4): 259–273. doi: 10.1364/JOCN.1.000259 MILAN G, JUAN E S, and JAMETT M. A simple estimator of the Hurst exponent for self-similar traffic flows[J]. IEEE Latin America Transactions, 2015, 12(8): 1349–1354. doi: 10.1109/TLA.2014.7014500 TRAN T D and LE L B. Stackelberg game approach for wireless virtualization design in wireless networks[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6. WANG Cong, WANG Cuirong, and YUAN Ying. Game based dynamical bandwidth allocation model for virtual networks[C]. 2009 First International Conference on Information Science and Engineering, Nanjing, China, 2009: 1745–1747. LUONG N C, HOANG D T, WANG Ping, et al. Data collection and wireless communication in Internet of Things (IoT) using economic analysis and pricing models: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2546–2590. doi: 10.1109/COMST.2016.2582841 AL-ZAHRANI A Y and YU F R. An energy-efficient resource allocation and interference management scheme in green heterogeneous networks using game theory[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5384–5396. doi: 10.1109/TVT.2015.2464322 XU Qichao, SU Zhou, and GUO Song. A game theoretical incentive scheme for relay selection services in mobile social networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6692–6702. doi: 10.1109/TVT.2015.2472289 GHOSH A, COTTATELLUCCI L, and ALTMAN E. Normalized Nash equilibrium for power allocation in cognitive radio Networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(1): 86–99. doi: 10.1109/TCCN.2015.2496578 RAO M S S and SOMAN S A. Marginal pricing of transmission services using min-max fairness policy[J]. IEEE Transactions on Power Systems, 2015, 30(2): 573–584. doi: 10.1109/TPWRS.2014.2331424 ZHANG Yueyue, ZHU Yaping, YAN Feng, et al. Energy-efficient radio resource allocation in software-defined wireless sensor networks[J]. IET Communications, 2018, 12(3): 349–358. doi: 10.1049/iet-com.2017.0937 -