面向圖像集的置信區(qū)間內(nèi)一致性增強(qiáng)質(zhì)量評(píng)價(jià)準(zhǔn)則
doi: 10.11999/JEIT180272 cstr: 32379.14.JEIT180272
-
東華大學(xué)信息科學(xué)與技術(shù)學(xué)院 ??上海 ??201620
Consistency Enhancement Quality Assessment Criterion in Confidence Interval for Image Set
-
College of Information Science and Technology, Donghua University, Shanghai 201620, China
-
摘要:
在對(duì)整個(gè)圖像集進(jìn)行增強(qiáng)質(zhì)量評(píng)價(jià)時(shí),現(xiàn)有的平均準(zhǔn)則會(huì)隨著不同圖像集非一致性地變化,從而導(dǎo)致較大的評(píng)價(jià)質(zhì)量波動(dòng)。為此,該文提出一個(gè)面向圖像集的置信區(qū)間內(nèi)一致性增強(qiáng)質(zhì)量評(píng)價(jià)準(zhǔn)則,通過設(shè)置應(yīng)用參數(shù)并使用置信區(qū)間篩選數(shù)據(jù),再比較各圖像增強(qiáng)前后的質(zhì)量分?jǐn)?shù)差值,由此評(píng)估圖像質(zhì)量增強(qiáng)的一致性,最終計(jì)算出一致性增強(qiáng)質(zhì)量分?jǐn)?shù)有效值。在眾多圖像增強(qiáng)算法中,所提準(zhǔn)則能夠挑選出具體應(yīng)用所需要的穩(wěn)定性強(qiáng)、可靠性高的增強(qiáng)算法。實(shí)驗(yàn)結(jié)果表明,所提準(zhǔn)則具有良好的主客觀評(píng)價(jià)一致性,性能優(yōu)于當(dāng)前的平均準(zhǔn)則,為各種圖像增強(qiáng)算法提供了一個(gè)可用于任意圖像集的質(zhì)量評(píng)價(jià)準(zhǔn)則。
-
關(guān)鍵詞:
- 圖像增強(qiáng) /
- 圖像集 /
- 質(zhì)量評(píng)價(jià) /
- 一致性增強(qiáng) /
- 置信區(qū)間
Abstract:When evaluating the enhancement quality of a whole image set, the existing average score criterion varies inconsistently with different image sets and produces a large evaluation quality fluctuation. Therefore, this paper proposes a consistency enhancement quality assessment criterion in confidence interval for any image set. By setting application parameters and using confidence interval to screen data, the proposed criterion compares the quality score difference before and after enhancing each image, and evaluates the consistency of image quality enhancement, and then calculates the effective value of consistency enhancement quality scores. Among many image enhancement algorithms, the proposed criterion can select the high-reliability enhancement algorithm for a specific application. The experimental results show that the proposed criterion has good subjective and objective consistency and outperforms the existing average score criterion, which provides an evaluation criterion for those image enhancement algorithms applied to any image set.
-
Key words:
- Image enhancement /
- Image set /
- Quality assessment /
- Consistency enhancement /
- Confidence interval
-
表 2 平均準(zhǔn)則的平均值與CEQA準(zhǔn)則的
${\rm{CEQ}}{{\rm{A}}_{{\rm{eff}}}}$ 值的對(duì)比(在UCIQE方法下)下載: 導(dǎo)出CSV
-
王志明. 無參考圖像質(zhì)量評(píng)價(jià)綜述[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(6): 1062–1079. doi: 10.16383/j.aas.2015.c140404WANG Zhiming. Review of no-reference image quality assessment[J]. Acta Automatica Sinica, 2015, 41(6): 1062–1079. doi: 10.16383/j.aas.2015.c140404 PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846 LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664–5677. doi: 10.1109/TIP.2016.2612882 LI Chongyi, GUO Jichang, CHEN Shanji, et al. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging[C]. IEEE International Conference on Image Processing, Phoenix, USA, 2016: 1993–1997. YANG M and SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062–6071. doi: 10.1109/TIP.2015.2491020 吳雪垠, 吳謹(jǐn), 張鶴. 逆濾波法在圖像復(fù)原中的應(yīng)用[J]. 信息技術(shù), 2011(10): 183–185. doi: 10.3969/j.issn.1009-2552.2011.10.050WU Xueyin, WU Jin, and ZHANG He. Research on image restoration techniques based on inverse filtering algorithm[J]. Information Technology, 2011(10): 183–185. doi: 10.3969/j.issn.1009-2552.2011.10.050 何石, 潘曉璐, 李一民. 一種均值濾波的優(yōu)化算法[J]. 信息技術(shù), 2012(3): 133–137. doi: 10.3969/j.issn.1009-2552.2012.03.038HE Shi, PAN Xiaolu, and LI Yimin. Optimization algorithm for average filtering[J]. Information Technology, 2012(3): 133–137. doi: 10.3969/j.issn.1009-2552.2012.03.038 蘇志鋒. 基于FPGA的圖像預(yù)處理研究與實(shí)現(xiàn)[D]. [博士論文], 華南理工大學(xué), 2015.SU Zhifeng. Studying and implementation of image signal preprocessing based on FPGA[D]. [Ph.D. dissertation], South China University of Technology, 2015. 李耀輝, 劉保軍. 基于直方圖均衡的圖像增強(qiáng)[J]. 華北科技學(xué)院學(xué)報(bào), 2003, 5(2): 65–67.LI Yaohui and LIU Baojun. The image enhancement based on histogram equalization[J]. Journal of North China Institute of Science and Technology, 2003, 5(2): 65–67. HITAM M S, AWALLUDIN E A, and YUSSOF W. Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]. International Conference on Computer Application Technology, Sousse, Tunisia, 2013: 1–5. 陳宇, 霍富榮, 苗華. 對(duì)比度拉伸在目標(biāo)探測與識(shí)別中的應(yīng)用研究[J]. 儀器儀表學(xué)報(bào), 2008, 29(4): 795–798.CHEN Yu, HUO Furong, and MIAO Hua. Application of contrast stretching in optical correlation detection and recognition[J]. Chinese Journal of Scientific Instrument, 2008, 29(4): 795–798. 楊勇, 郭玲, 王天江. 基于多尺度結(jié)構(gòu)張量的多類無監(jiān)督彩色紋理圖像分割方法[J]. 計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào), 2014, 26(5): 812–825.YANG Yong, GUO Ling, and WANG Tianjiang. Multi-scale structure tensor based unsupervised color-texture image segmentation approach in multiclass[J]. Journal of Computer-Aided Design &Computer Graphics, 2014, 26(5): 812–825. 蔣剛毅, 黃大江, 王旭, 等. 圖像質(zhì)量評(píng)價(jià)方法研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2010, 32(1): 219–226. doi: 10.3724/SP.J.1146.2009.00091JIANG Gangyi, HUANG Dajiang, WANG Xu, et al. Overview on image quality assessment methods[J]. Journal of Electronics &Information Technology, 2010, 32(1): 219–226. doi: 10.3724/SP.J.1146.2009.00091 EMBERTON S, CHITTKA L, and CAVALLARO A. Hierarchical rank-based veiling light estimation for underwater dehazing[C]. British Machine Vision Conference, Swansea, UK, 2015: 125.1–125.12. JIAN Muwei, QI Qiang, DONG Junyu, et al. The OUC-Vision large-scale underwater image database[C]. IEEE International Conference on Multimedia & Expo, Hong Kong, China, 2017: 1297–1302. JIAN Muwei, QI Qiang, DONG Junyu, et al. Saliency detection using quaternionic distance based weber local descriptor and level priors[J]. Multimedia Tools and Applications, 2018, 77(11): 14343–14360. doi: 10.1007/s11042-017-5032-z -