基于刪失數(shù)據(jù)的低通信量融合檢測方法
doi: 10.11999/JEIT180039 cstr: 32379.14.JEIT180039
-
1.
西安電子科技大學(xué)雷達(dá)信號(hào)處理國家重點(diǎn)實(shí)驗(yàn)室 ??西安 ??710071
-
2.
西安電子科技大學(xué)信息感知技術(shù)協(xié)同創(chuàng)新中心 ??西安 ??710071
A Low-communication-rate Fusion Approach Based on Censored Data
-
1.
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
2.
Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071, China
-
摘要: 在多基地雷達(dá)中,該文為解決局部雷達(dá)站同融合中心之間通信帶寬受限的問題,提出一種基于刪失數(shù)據(jù)的分布式融合(CDDF)檢測算法。在局部雷達(dá)站具有多通道接收系統(tǒng)的條件下,計(jì)算了雜波背景下動(dòng)目標(biāo)回波信號(hào)的似然比函數(shù)。各個(gè)局部雷達(dá)站根據(jù)其自身傳輸信道的通信限制設(shè)置局部門限,剔除低于局部門限的似然比,同時(shí)將高于局部門限的似然比向融合中心傳輸?;谀温?皮爾遜引理,融合中心根據(jù)接收到的刪失數(shù)據(jù)計(jì)算全局檢驗(yàn)統(tǒng)計(jì)量,并將其與全局門限進(jìn)行比較獲得全局判決。此外,該文推導(dǎo)了全局門限同虛警概率或者檢測概率的閉式表達(dá)式。數(shù)值仿真表明,該算法可以在大幅降低通信率的同時(shí)獲得比“或”準(zhǔn)則更好的檢測性能,并且隨著通信率的增加逐漸逼近集中式(CF)融合的檢測性能。
-
關(guān)鍵詞:
- 多基地雷達(dá)系統(tǒng) /
- 奈曼-皮爾遜引理 /
- 動(dòng)目標(biāo)檢測 /
- 低通信量 /
- 刪失數(shù)據(jù)
Abstract: In multistatic radar, a Censored Data-Based Decentralized Fusion (CDDF) is proposed to address the issue of fusing local observations with communication constraints. The local likelihood ratio is calculated based on the observation of moving target immersed in clutter, where the local radar site possesses a coherent multi-channel array. Each local radar site transmits if and only if their observations’ likelihood ratios exceed the local thresholds, which determine the communication rates. By virtue of the Neyman-Pearson lemma, the global test statistic can be achieved by combining received censored data. The fusion center makes a global decision through comparing the global test statistic with a global threshold. Besides, the closed-form expression of probability of false alarm or probability of detection is also derived in this paper. Numerical simulation shows that the CDDF has better performance than " OR” rule, while approaching the performance of Centralized Fusion (CF) with the increase of the communication rate. -
CHERNYAK V. Fundamentals of Multisite Radar System: Multistatic Radars and Multiradar Systems[M]. New York: Gordon & Breach Science Publishers, 1998: 1–24. VARSHNEY P K. Distributed Detection and Data Fusion[M]. New York: Springer, 1997: 1–5. GOODMAN N A and BRUYERE D. Optimum and decentralized detection for multistatic airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 13–22 doi: 10.1109/TAES.2007.4285374 HE Qian, LEHMANN N H, BLUM R S, et al. MIMO radar moving target detection in homogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1290–1301 doi: 10.1109/TAES.2010.5545189 ZHAO Hongyan, LIU Jun, ZHANG Zijing, et al. Linear fusion for target detection in passive multistatic radar[J]. Signal Processing, 2017, 130: 175–182 doi: 10.1016/J.SIGPRO.2016.06.024 YANG Pengfei and CHEN Biao. To listen or not: Distributed detection with asynchronous transmissions[J]. IEEE Signal Processing Letters, 2015, 22(5): 628–632 doi: 10.1109/LSP.2014.2365137 CIUONZO D and SALVO R P. Distributed detection of a non-cooperative target via generalized locally-optimum approaches[J]. Information Fusion, 2017, 36: 261–274 doi: 10.1016/J.INFFUS.2016.12.006 GAO Fei, GUO Lili, LI Hongbin, et al. Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(4): 2032–2042 doi: 10.1109/TWC.2014.2379279 KASSAM S. Signal Detection in Non-Gaussian Noise[M]. New York: Springer, 1988: 97–124. ALTAY C and DELIC H. Optimal quantization intervals in distributed detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 38–48 doi: 10.1109/TAES.2015.140551 RAGO C, WILLET P, and BAR-SHALOM Y. Censoring sensors: A low-communication-rate scheme for distributed detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 554–568 doi: 10.1109/7.489500 APPADWEDULA S, VEERAVALLI V, and JONES D. Energy-efficient detection in sensor networks[J]. IEEE Journal on Selected Areas in Communication, 2005, 23(4): 693–702 doi: 10.1109/JSAC.2005.843536 HE Hao and VARSHNEY P K. Fusing censored dependent data for distributed detection[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4385–4395 doi: 10.1109/TSP.2015.2439231 胡勤振, 蘇洪濤, 周生華, 等. 多基地雷達(dá)中雙門限CFAR檢測算法[J]. 電子與信息學(xué)報(bào), 2016, 38(10): 2430–2436 doi: 10.11999/JEIT151163HU Qinzhen, SU Hongtao, ZHOU Shenghua, et al. Double threshold CFAR detection for multisite radar[J]. Journal of Electronics&Information Technology, 2016, 38(10): 2430–2436 doi: 10.11999/JEIT151163 胡勤振, 楊芊, 蘇洪濤, 等. 分布式MIMO雷達(dá)雙門限GLRT CFAR檢測[J]. 西安電子科技大學(xué)學(xué)報(bào), 2016, 43(6): 29–33 doi: 10.3969/J.ISSN.1001-2400.2016.04.006HU Qinzhen, YANG Qian, SU Hongtao, et al. Double-threshold GLRT CFAR detection in distributed MIMO radar[J]. Journal of Xidian University, 2016, 43(6): 29–33 doi: 10.3969/J.ISSN.1001-2400.2016.04.006 BHARGAVA R P and KHATRI C G. The distribution of product of independent beta random variables with application to multivariate analysis[J]. Annals of the Institute of Statistical Mathematics, 1981, 33(1): 287–296 doi: 10.1007/BF02480942 -