一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

多測(cè)量向量模型下的修正MUSIC算法

林云 胡強(qiáng)

林云, 胡強(qiáng). 多測(cè)量向量模型下的修正MUSIC算法[J]. 電子與信息學(xué)報(bào), 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001
引用本文: 林云, 胡強(qiáng). 多測(cè)量向量模型下的修正MUSIC算法[J]. 電子與信息學(xué)報(bào), 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001
Yun LIN, Qiang HU. Modified MUSIC Algorithm for Multiple Measurement Vector Models[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001
Citation: Yun LIN, Qiang HU. Modified MUSIC Algorithm for Multiple Measurement Vector Models[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2584-2589. doi: 10.11999/JEIT180001

多測(cè)量向量模型下的修正MUSIC算法

doi: 10.11999/JEIT180001 cstr: 32379.14.JEIT180001
詳細(xì)信息
    作者簡(jiǎn)介:

    林云:男,1968年生,副教授,研究方向?yàn)閴嚎s感知、自適應(yīng)濾波算法

    胡強(qiáng):男,1993年生,碩士生,研究方向?yàn)閴嚎s感知

    通訊作者:

    胡強(qiáng)  huqiang0424@qq.com

  • 中圖分類號(hào): TN911.7

Modified MUSIC Algorithm for Multiple Measurement Vector Models

  • 摘要: 壓縮感知多測(cè)量向量(MMV)模型用于解決具有相同稀疏結(jié)構(gòu)的多快拍問(wèn)題,在傳統(tǒng)陣列信號(hào)處理應(yīng)用中多重信號(hào)分類(MUSIC)方法是一種常見的方法,但當(dāng)快拍數(shù)不足(低于稀疏度)時(shí)其性能將急劇惡化。Kim等人(2012)推導(dǎo)出一種修正的MUSIC譜,并將壓縮重構(gòu)方法和MUSIC算法結(jié)合提出壓縮感知MUSIC算法(CS-MUSIC),能夠有效克服快拍數(shù)不足的問(wèn)題。該文將Kim等人的結(jié)論擴(kuò)展到一般情形,并基于傳統(tǒng)的MUSIC譜和CS-MUSIC譜提出一種修正的MUSIC算法(MMUSIC)。仿真結(jié)果表明所提算法能夠有效克服快拍數(shù)不足的問(wèn)題,并且具有比CS-MUSIC算法和壓縮感知貪婪算法更高的重構(gòu)概率。
  • 圖  1  各算法重構(gòu)概率P與稀疏度K的關(guān)系

    圖  2  重構(gòu)概率P與觀測(cè)數(shù)M的關(guān)系

    圖  3  q值選取對(duì)MMUSIC算法重構(gòu)性能的影響

  • CANDèS E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425 doi: 10.1109/TIT.2006.885507
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306 doi: 10.1109/TIT.2006.871582
    CANDéS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 53(2): 489–509 doi: 10.1109/TIT.2005.862083
    BLANCHARD J D, CERMAK M, HANLE D, et al. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694–1704 doi: 10.1109/TSP.2014.2301980
    CHOI J W, SHIM B, and DING Y. Compressed sensing for wireless communications: Useful tips and tricks[J]. IEEE Communications Surveys and Tutorials, 2017, 19(3): 1527–1550 doi: 10.1109/COMST.2017.2664421
    GUO Jie, SONG Bin, and HE Ying. A survey on compressed sensing in vehicular infotainment systems[J]. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2662–2680 doi: 10.1109/COMST.2017.2705027
    YANG Lin, SONG Kun, and SIU Yunming. Iterative clipping noise recovery of ofdm signals based on compressed sensing[J]. IEEE Transactions on Broadcasting, 2017, 63(4): 706–713 doi: 10.1109/TBC.2017.2669641
    DU Zhaohui, CHEN Xuefeng, ZHANG Han, et al. Compressed-Sensing-based periodic impulsive feature detection for wind turbine systems[J]. IEEE Transactions on Industrial Informatics, 2017, 12(6): 2933–2945 doi: 10.1109/TII.2017.2666840
    WU Kai and LIU Jing. Learning large-scale fuzzy cognitive maps based on compressed sensing and application in reconstructing gene regulatory networks[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1546–1560 doi: 10.1109/TFUZZ.2017.2741444
    石要武, 陳淼, 單澤濤, 等. 基于特征空間MUSIC算法的相干信號(hào)波達(dá)方向空間平滑估計(jì)[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版), 2017, 47(1): 268–273 doi: 10.13229/j.cnki.jdxbgxb201701039

    SHI Yaowu, CHEN Miao, SHAN Zetao, et al. Spatial smoothing technique for coherent signal DOA estimation based on eigen space MUSIC algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1): 268–273 doi: 10.13229/j.cnki.jdxbgxb201701039
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transaction on Signal Processing, 2005, 53(7): 2477–2488 doi: 10.1109/TSP.2005.849172
    BRESLER Y. Spectrum-blind sampling and compressive sensing for continuous-index signals[C]. Information Theory and Applications Workshop, San Diego, USA, 2008: 547–554.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280 doi: 10.1109/TAP.1986.1143830
    KIM J M, LEE O K, and YE J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301 doi: 10.1109/TIT.2011.2171529
    呂志豐, 雷宏. 基于差值映射的壓縮感知MUSIC算法[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1874–1878 doi: 10.11999/JEIT141542

    Lü Zhifeng and LEI Hong. Compressive sensing MUSIC algorithm based on difference map[J]. Journal of Electronics&Information Technology, 2015, 37(8): 1874–1878 doi: 10.11999/JEIT141542
    TROPP J A. Algorithms for simultaneous sparse approximation. Part II: convex relaxation[J]. Signal Processing, 2006, 86(3): 589–602 doi: 10.1109/TSP.2016.2637314
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transaction on Signal Processing, 2007, 55(7): 3704–3716 doi: 10.1109/TSP.2007.894265
    BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982–2001 doi: 10.1109/TIT.2010.2040894
  • 加載中
圖(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  1614
  • HTML全文瀏覽量:  609
  • PDF下載量:  75
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-01-02
  • 修回日期:  2018-06-04
  • 網(wǎng)絡(luò)出版日期:  2018-07-18
  • 刊出日期:  2018-11-01

目錄

    /

    返回文章
    返回