多用戶降噪差分混沌鍵控通信方案
doi: 10.11999/JEIT171173 cstr: 32379.14.JEIT171173
-
重慶郵電大學(xué)信號(hào)與信息處理重慶市重點(diǎn)實(shí)驗(yàn)室 ??重慶 ??400065
A Multiuser Noise Reduction Differential Chaos Shift Keying System
-
Chongqing Key Laboratory of Signal and Information Processing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要:
傳統(tǒng)多用戶差分混沌鍵控主要缺點(diǎn)是誤碼率差,該文提出一種多用戶降噪差分混沌鍵控(MU-NRDCSK)通信方案。在發(fā)射端,發(fā)送M/P長度混沌序列,復(fù)制P次后作為參考信號(hào),所有用戶共用同一參考信號(hào),信息信號(hào)延遲不同的時(shí)間來區(qū)分用戶。在接收端,將接收到的信號(hào)通過滑動(dòng)平均濾波器平均,再與其不同時(shí)間延遲后的信號(hào)進(jìn)行相關(guān)。該方案通過降低噪聲項(xiàng)的方差來提高系統(tǒng)誤碼性能。文中推導(dǎo)了該方案在加性高斯白噪聲(AWGN)信道和Rayleigh信道下的理論誤碼率公式并進(jìn)行了蒙特卡洛仿真。理論分析和仿真結(jié)果表明,理論公式與仿真結(jié)果能較好地吻合,MU-NRDCSK方案能較好地提高系統(tǒng)誤碼性能,在混沌通信領(lǐng)域具有很好的發(fā)展前景與研究?jī)r(jià)值。
-
關(guān)鍵詞:
- 混沌通信 /
- 多用戶 /
- 滑動(dòng)平均濾波器 /
- 降噪 /
- 比特誤碼率
Abstract:One of the major drawbacks of the conventional Multiuser Differential Chaos Shift Keying is the poor Bit Error Rate (BER), a MultiUser Noise Reduction Differential Chaos Shift Keying (MU-NRDCSK) system is proposed. At the transmitter, M/P chaotic samples are transmitted and then duplicated P times as a reference signal, all users share the same reference signal, and information signals are delayed by different times to distinguish different users. At the receiver, the received signal is averaged by a moving average filter, and then the resultant filtered signal is correlated to different time-delated replica. The scheme can enhance the performance of BER by reducing the variance of noise terms in the system. The theoretical BER formula of this new scheme is derived in Additive White Gaussian Noise (AWGN) channel and Rayleigh channel. Theoretical analysis and the simulation results show that the theoretical formula and the simulation result are in good agreement. The MU-NRDCSK scheme can enhance the performance of BER better and has good development prospects and research value in the chaotic communication field.
-
Key words:
- Chaotic communication /
- Multiuser /
- Moving average filter /
- Noise reduction /
- Bit Error Rate (BER)
-
陳志剛, 梁滌青, 鄧小鴻, 等. Logistic混沌映射性能分析與改進(jìn)[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039 張剛, 孟維, 張?zhí)祢U. 多用戶分段移位差分混沌鍵控通信方案[J]. 電子與信息學(xué)報(bào), 2017, 39(5): 1219–1225. doi: 10.11999/JEIT160795ZHANG Gang, MENG Wei, and ZHANG Tianqi. Multiuser communication scheme based on segment shift differential chaos shift keying[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1219–1225. doi: 10.11999/JEIT160795 XU Weikai, WANG Lin, and CHEN Guanrong. Performance of DCSK cooperative communication systems over multipath fading channels[J]. IEEE Transactions on Circuits & System I Regular Papers, 2011, 58(1): 196–204. doi: 10.1109/TCSI.2010.2071730 DAS S, MANDAL S K, and CHAKRABORTY M. LMMSE equalized DCSK communication system over a multipath fading channel with AWGN noise[C]. Third International Conference on Computer, Communication, Control and Information Technology, Hooghly, India, 2015: 1–4. VALI R, BERBER S M, and NGUANG S K. Analysis of chaos-based code tracking using chaotic correlation statistics[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2012, 59(4): 796–805. doi: 10.1109/TCSI.2011.2169885 FU Yongqing and LI Xingyuan. A novel chaos oscillation and its application in wireless communication[C]. International Conference on Smart and Sustainable City and Big Data, the Institution of Engineering and Technology, Shanghai, China, 2015: 83–90. DING Qun and WANG Jianan. Design of frequency-modulated correlation delay shift keying chaotic communication system[J]. IET Communications, 2011, 5(7): 901–905. doi: 10.1049/iet-com.2010.0643 ESCRIBANO F J, KADDOUM G, WAGEMAKERS A, et al. Design of a new differential chaos-shift-keying system for continuous mobility[J]. IEEE Transactions on Communications, 2016, 64(5): 2066–2078. doi: 10.1109/TCOMM.2016.2538236 MARTIN H and THOMAS S. Chaos communication over noisy channels[J]. International Journal of Bifurcation and Chaos, 2000, 10(4): 719–735. doi: 10.1142/S0218127400000505 FRANCIS C M L and CHI K T. On optimal detection of noncoherent chaos-shift-keying signals in a noisy environment[J]. International Journal of Bifurcation & Chaos, 2003, 13(6): 1587–1597. YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914 ALBASSAM N N. A new hybrid DCSK-CDSK scheme for Chaos based communications[C]. International Conference on Information and Communication Systems, IEEE, Irbid, Jordan, 2014: 1–5. YANG Hua and JIANG Guoping. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication[J]. IEEE Transactions on Circuits System II Express Briefs, 2012, 59(5): 312–316. doi: 10.1109/TCSII.2012.2190859 GALIAS Z and MAGGIOM G M. Quadrature chaos–shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 2001, 48(12): 1510–1519. doi: 10.1109/TCSI.2001.972858 KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSII.2015.2435831 LAU F C M, YIP M M, TSE C K, et al. A multiple access technique for differential chaos shift keying[J]. International Journal of Innovative Technology & Exploring Engineering, 2013, 49(1): 96–104. doi: 10.1109/81.974883 XU Weikai, WANG Lin, and KOLUMBAN G. A novel differential chaos shift keying modulation scheme[J]. International Journal of Bifurcation & Chaos, 2011, 21(3): 799–814. doi: 10.1142/S0218127411028829 TALEB F, BENDIMERAD F T, and ROVIRASR D. Very high efficiency differential chaos shift keying system[J]. IET Communications, 2016, 10(17): 2300–2307. doi: 10.1049/iet-com.2016.0411 BAI Chao, REN Haipeng, GREBOGI C, et al. Chaos-based underwater communication with arbitrary transducers and bandwidth[J]. Applied Sciences, 2018, 8(2): 162. doi: 10.3390/app8020162 KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2016, 63(7): 648–652. doi: 10.1109/TCSII.2016.2532041 KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225 -