一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于動態(tài)效用的時空眾包在線任務(wù)分配

余敦輝 張靈莉 付聰

余敦輝, 張靈莉, 付聰. 基于動態(tài)效用的時空眾包在線任務(wù)分配[J]. 電子與信息學報, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930
引用本文: 余敦輝, 張靈莉, 付聰. 基于動態(tài)效用的時空眾包在線任務(wù)分配[J]. 電子與信息學報, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930
YU Dunhui, ZHANG Lingli, FU Cong. Online Task Allocation of Spatial Crowdsourcing Based on Dynamic Utility[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930
Citation: YU Dunhui, ZHANG Lingli, FU Cong. Online Task Allocation of Spatial Crowdsourcing Based on Dynamic Utility[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1699-1706. doi: 10.11999/JEIT170930

基于動態(tài)效用的時空眾包在線任務(wù)分配

doi: 10.11999/JEIT170930 cstr: 32379.14.JEIT170930
基金項目: 

國家重點基礎(chǔ)研究發(fā)展計劃(2014CB340404),國家自然科學基金(61373037, 61672387)

詳細信息
    作者簡介:

    余敦輝: 男,1974年生,副教授,研究方向為服務(wù)計算、大數(shù)據(jù). 張靈莉: 女,1993年生,碩士生,研究方向為大數(shù)據(jù). 付 聰: 男,1991年生,碩士生,研究方向為大數(shù)據(jù).

  • 中圖分類號: TP393

Online Task Allocation of Spatial Crowdsourcing Based on Dynamic Utility

Funds: 

The National Key Basic Research and Department Program of China (2014CB340404), The National Natural Science Foundation of China (61373037, 61672387)

  • 摘要: 為提升眾包任務(wù)在線分配的總體效用,該文提出一種適用于時空眾包環(huán)境的在線任務(wù)分配方法。該方法針對時空眾包環(huán)境下的在線任務(wù)分配問題,首先提出一種以眾包任務(wù)為中心的K最近鄰算法來進行候選眾包工人的選擇,進而設(shè)計一種基于動態(tài)效用的閾值選擇算法,實現(xiàn)眾包工人與任務(wù)的最優(yōu)分配。實驗結(jié)果顯示,文中所提出算法具有較好的有效性和可行性,并能在一定程度上保證眾包工人的可靠性,優(yōu)化平臺總效益。
  • [2] BRABHAM D C. Crowdsourcing the public participation process for planning projects[J]. Planning Theory, 2009, 8(3): 242-262.
    HOWE J. The rise of crowdsourcing[J]. Wired Magazine, 2016, 14(6): 1-4.
    RUI Lanlan, ZHANG Pan, HUANG Haoqiu, et al. Reputation-based incentive mechanisms in crowdsourcing [J]. Journal of Electronics & Information Technology, 2016, 38(7): 1808-1815. doi: 10.11999/JEIT151095.
    SHI Zhan, XIN Yu, SUN Yue, et al. An allocation mechanism based on the reliability of users for crowdsourcing systems[J]. Journal of Computer Applications, 2017, 37(9): 2449-2453.
    FENG Jianhong. Key techniques of crowdsourced query processing[D]. [Ph.D. dissertation], Tinghua University, 2015.
    [6] LI Yu, YIU Manlung, and XU Wenjian. Oriented online route recommendation for spatial crowdsourcing task workers[C]. 14th International Symposium on Advances in Spatial and Temporal Database, SSTD 2015, HongKong, China, 2015: 137-156. doi: 10.1007/978-3-319-22363-6_8.
    TONG Yongxin, YUAN Ye, CHENG Yurong, et al. Survey on spatiotemporal crowdsourced data management tecllniques[J]. Journal of Software, 2017, 28(1): 35-58. doi: 10.13328/j.cnki.jos.005140.
    SONG Tianshu, TONG Yongxin, WANG Libin, et al. Online task assignment for three types of objects under spatial crowdsourcing environment[J]. Journal of Software, 2017, 28(3): 611-630. doi: 10.13328/j.cnki.jos.005166.
    [9] CHENG Peng, LIAN Xiang, CHEN Lei, et al. Task assignment on multi-skill oriented spatial crowdsourcing[J]. IEEE Transactions on Knowledge & Data Engineering, 2016, 28(8): 2201-2215. doi: 10.1109/TKDE.2016.2550041.
    [10] HASSAN U U and CURRY E. Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning[J]. Expert Systems with Applications, 2016, 58: 36-56.
    [11] TONG Yongxin, SHE Jieying, DING Bolin, et al. Online mobile micro-task allocation in spatial crowdsourcing[C]. 2016 IEEE 32nd International Conference on Data Engineering, 2016: 49-60. doi: 10.1109/ICDE.2016.7498228.
    [12] XUE Andyyuan, ZHANG Rui, ZHENG Yu, et al. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction[C]. 2013 IEEE 29th International Conference on Data Engineering, 2013: 254-265. doi: 10.1109/ICDE.2013.6544830.
    YANG Hang. Research on prediction of trajectories of moving objects based on historical information[D]. [Master dissertation], Guangxi Normal University, 2016.
    SONG Xiaoyu, SUN Yeting, and SUN Huanliang. CYPK- KNN: A modified monitoring KNN queries over moving objects algorithm[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 22(6): 1004-1007.
    DENG Bin. K-nearnest neighbors query algorithm in weighted uncertain graph[D]. [Master dissertation], Shanghai Ocean University, 2015.
    NIU Jianguang, CHEN Luo, ZHAO Liang, et al. Processing continuous K nearest neighbor queries on highly dynamic moving objects[J]. Computer Science, 2011, 38(3): 182-186.
  • 加載中
計量
  • 文章訪問數(shù):  1612
  • HTML全文瀏覽量:  243
  • PDF下載量:  63
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-10-09
  • 修回日期:  2018-04-08
  • 刊出日期:  2018-07-19

目錄

    /

    返回文章
    返回