基于動態(tài)效用的時空眾包在線任務(wù)分配
doi: 10.11999/JEIT170930 cstr: 32379.14.JEIT170930
-
(湖北大學計算機與信息工程學院 武漢 430062)
基金項目:
國家重點基礎(chǔ)研究發(fā)展計劃(2014CB340404),國家自然科學基金(61373037, 61672387)
Online Task Allocation of Spatial Crowdsourcing Based on Dynamic Utility
-
YU Dunhui ZHANG Lingli FU Cong
Funds:
The National Key Basic Research and Department Program of China (2014CB340404), The National Natural Science Foundation of China (61373037, 61672387)
-
摘要: 為提升眾包任務(wù)在線分配的總體效用,該文提出一種適用于時空眾包環(huán)境的在線任務(wù)分配方法。該方法針對時空眾包環(huán)境下的在線任務(wù)分配問題,首先提出一種以眾包任務(wù)為中心的K最近鄰算法來進行候選眾包工人的選擇,進而設(shè)計一種基于動態(tài)效用的閾值選擇算法,實現(xiàn)眾包工人與任務(wù)的最優(yōu)分配。實驗結(jié)果顯示,文中所提出算法具有較好的有效性和可行性,并能在一定程度上保證眾包工人的可靠性,優(yōu)化平臺總效益。Abstract: In order to improve the overall effectiveness of the online assignment of crowdsourcing tasks, an online task assignment method is proposed for the space-time crowdsourcing environment. To deal with the problem of online task assignment in spatiotemporal crowdsourcing environment, a K-NearestNeighbor (KNN) algorithm is firstly proposed based on crowdsourcing task to select the candidate crowdsourcing workers. Then a threshold selection algorithm based on dynamic utility is designed to realize the optimal allocation of crowdsourcing workers and tasks. Experimental results show that the proposed algorithm is effective and feasible, and can guarantee the reliability of crowdsourcing workers and optimize the overall efficiency of the platform.
-
[2] BRABHAM D C. Crowdsourcing the public participation process for planning projects[J]. Planning Theory, 2009, 8(3): 242-262. HOWE J. The rise of crowdsourcing[J]. Wired Magazine, 2016, 14(6): 1-4. RUI Lanlan, ZHANG Pan, HUANG Haoqiu, et al. Reputation-based incentive mechanisms in crowdsourcing [J]. Journal of Electronics & Information Technology, 2016, 38(7): 1808-1815. doi: 10.11999/JEIT151095. SHI Zhan, XIN Yu, SUN Yue, et al. An allocation mechanism based on the reliability of users for crowdsourcing systems[J]. Journal of Computer Applications, 2017, 37(9): 2449-2453. FENG Jianhong. Key techniques of crowdsourced query processing[D]. [Ph.D. dissertation], Tinghua University, 2015. [6] LI Yu, YIU Manlung, and XU Wenjian. Oriented online route recommendation for spatial crowdsourcing task workers[C]. 14th International Symposium on Advances in Spatial and Temporal Database, SSTD 2015, HongKong, China, 2015: 137-156. doi: 10.1007/978-3-319-22363-6_8. TONG Yongxin, YUAN Ye, CHENG Yurong, et al. Survey on spatiotemporal crowdsourced data management tecllniques[J]. Journal of Software, 2017, 28(1): 35-58. doi: 10.13328/j.cnki.jos.005140. SONG Tianshu, TONG Yongxin, WANG Libin, et al. Online task assignment for three types of objects under spatial crowdsourcing environment[J]. Journal of Software, 2017, 28(3): 611-630. doi: 10.13328/j.cnki.jos.005166. [9] CHENG Peng, LIAN Xiang, CHEN Lei, et al. Task assignment on multi-skill oriented spatial crowdsourcing[J]. IEEE Transactions on Knowledge & Data Engineering, 2016, 28(8): 2201-2215. doi: 10.1109/TKDE.2016.2550041. [10] HASSAN U U and CURRY E. Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning[J]. Expert Systems with Applications, 2016, 58: 36-56. [11] TONG Yongxin, SHE Jieying, DING Bolin, et al. Online mobile micro-task allocation in spatial crowdsourcing[C]. 2016 IEEE 32nd International Conference on Data Engineering, 2016: 49-60. doi: 10.1109/ICDE.2016.7498228. [12] XUE Andyyuan, ZHANG Rui, ZHENG Yu, et al. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction[C]. 2013 IEEE 29th International Conference on Data Engineering, 2013: 254-265. doi: 10.1109/ICDE.2013.6544830. YANG Hang. Research on prediction of trajectories of moving objects based on historical information[D]. [Master dissertation], Guangxi Normal University, 2016. SONG Xiaoyu, SUN Yeting, and SUN Huanliang. CYPK- KNN: A modified monitoring KNN queries over moving objects algorithm[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 22(6): 1004-1007. DENG Bin. K-nearnest neighbors query algorithm in weighted uncertain graph[D]. [Master dissertation], Shanghai Ocean University, 2015. NIU Jianguang, CHEN Luo, ZHAO Liang, et al. Processing continuous K nearest neighbor queries on highly dynamic moving objects[J]. Computer Science, 2011, 38(3): 182-186. -
計量
- 文章訪問數(shù): 1612
- HTML全文瀏覽量: 243
- PDF下載量: 63
- 被引次數(shù): 0