基于理想格的高效密文策略屬性基加密方案
doi: 10.11999/JEIT170863 cstr: 32379.14.JEIT170863
-
(解放軍信息工程大學(xué) 鄭州 450001)
基金項(xiàng)目:
國家自然科學(xué)基金(61702548, 61601515),河南省基礎(chǔ)與前沿技術(shù)課題(162300410192)
An Efficient Ciphertext-policy Attribute-based Encryption on Ideal Lattices
-
ZHAO Jian GAO Haiying HU Bin
Funds:
The National Natural Science Foundation of China (61702548, 61601515), The Fundamental and Frontier Technology Research of Henan Province (162300410192)
-
摘要: 已有的基于格的密文策略屬性基(CP-ABE)方案只能通過矩陣運(yùn)算方法進(jìn)行加解密,加解密效率不高,而效率較高的基于理想格的密鑰策略屬性基(KP-ABE)方案又存在對各類實(shí)際應(yīng)用場景適應(yīng)性較差的問題。為解決上述問題,該文利用理想格上的算法生成主密鑰和密鑰,同時(shí)在多項(xiàng)式環(huán)上進(jìn)行運(yùn)算,極大地提高了加解密效率;通過在原屬性集合中添加虛擬屬性,方案成功結(jié)合訪問結(jié)構(gòu)生成密文,同時(shí)授權(quán)用戶可以構(gòu)建出滿足解密條件的子集,從而實(shí)現(xiàn)方案的正確解密;還利用單個(gè)陷門矩陣生成密鑰,有效降低了公共參數(shù)和主密鑰的數(shù)量。最終該文構(gòu)建了一個(gè)基于理想格的支持門限訪問結(jié)構(gòu)的高效CP-ABE方案,并證明方案在環(huán)上容錯(cuò)學(xué)習(xí)(R-LWE)假設(shè)下是選擇性安全的。與現(xiàn)有支持門限訪問結(jié)構(gòu)的方案的對比分析表明,該文方案公共參數(shù)數(shù)量更少、效率更高,且對實(shí)際應(yīng)用場景有更好的適應(yīng)性。
-
關(guān)鍵詞:
- 屬性基加密方案 /
- 密文策略 /
- 理想格 /
- 環(huán)上容錯(cuò)學(xué)習(xí)
Abstract: The existing Ciphertext-Policy Attribute-Based Encryption (CP-ABE) schemes from lattices are inefficient while they are performed in matrix operation, and these Key-Policy Attribute-Based Encryption (KP-ABE) schemes from ideal lattices with higher efficiency are inadaptable to most practical application scenarios. To solve these problems, the new scheme generates master keys and secret keys by the algorithms based on ideal lattices and the whole scheme is computed over a polynomial ring, thus its efficiency of encryption and decryption can be greatly improved. The ciphertexts associated with access structure are successfully generated by adding some virtual attributes to the original attribute set. Meanwhile, the authorized user can build a subset based on these virtual attributes for decrypting the scheme correctly. And the secret keys are generated by a single trapdoor matrix, which reduces the number of public parameters and master keys effectively. Finally, an efficient CP-ABE scheme for flexible threshold access structures on ideal lattices is proposed, and its security is reduced to decisional Learning With Errors over Ring (R-LWE) assumption against chosen plaintext attack in the selective security model. Comparative analysis of similar schemes shows that the new scheme has less public parameters and higher efficiency, and gets better adaptability to the practical application scenarios. -
[2] GOYAL V, PANDEY O, SAHAI A, et al. Attribute-based encryption for fine grained access control of encrypted data[C]. Proceedings of the 13th ACM Conference on Computer and Communications Security, Alexandria, USA, 2006: 89-98. doi: 10.1145/1180405.1180418. SAHAI A and WATERS B. Fuzzy identity-based encryption [C]. Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 2005: 457-473. doi: 10.1007/11426639_27. ZHAO Jian. Research on attribute-based encryption from lattices[D]. [Master dissertation], The PLA Information Engineering University, 2015: 4-7. [4] MALLUHI Q, SHIKFA A, and TRINH V. A ciphertext- policy attribute-based encryption scheme with optimized ciphertext size and fast decryption[C]. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2017: 230-240. doi: 10.1145/3052973.3052987. [5] AJTAI M. Generating hard instances of lattice problems (extend abstract)[C]. Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 99-108. doi: 10.1145/237814.237838. [6] GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, 2008: 197-206. doi: 10.1145/1374376.1374407. [8] ACAR A, AKSU H, ULUAGAC A S, et al. A survey on homomorphic encryption schemes: Theory and implementation[OL]. https://arxiv.org/pdf/1704.03578.pdf, 2017. [9] LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings [J]. Journal of the ACM, 2010, 60(6): 1-35. doi: 10.1145/2535925. [10] LYUBASHEVSKY V, PEIKERT C, and REGEV O. A toolkit for ring-LWE cryptography[C]. Advances in CryptologyThe 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, 2013: 35-54. doi: https://doi.org/10.1007 /978-3-642-38348-9_3. WU Liqiang, YANG Xiaoyuan, and HAN Yiliang. An efficient FIBE scheme based on ideal lattices[J]. Chinese Journal of Computers, 2015, 38(4): 775-782. doi: 10.3724/ SP.J.1016. 2015.00775. [12] SUN Lei, WANG Shuaili, LI Zuohui, et al. Large universe ciphertext-policy attribute-based encryption with efficient revocation[C]. Advances in Engineering ResearchThe 2nd International Conference on Electrical, Automation and Mechanical Engineering, Shanghai, China, 2017: 243-249. doi: 10.2991/eame-17.2017.58. [13] NING Jianting, DONG Xiaolei, GAO Zhenfu, et al. White- box traceable ciphertext-policy attribute-based encryption supporting flexible attributes[J]. IEEE Transactions on Information Forensics & Security, 2017, 10(6): 1274-1288. doi: 10.1109/TIFS.2015.2405905. [14] HU Peng and GAO Haiying. Ciphertext-policy attribute- based encryption for general circuits from bilinear maps[J]. Wuhan University Journal of Natural Sciences, 2017, 22(2): 171-177. doi: 10.1007/s11859-017-1231-8. [15] ODELU V, DAS A, RAO Y, et al. Pairing-based CP-ABE with constant-size ciphertexts and secret keys for cloud environment[J]. Computer Standards & Interfaces, 2017, 54(1): 3-9. doi: 10.1016/j.csi.2016.05.002. [16] ZHANG Jiang, ZHANG Zhenfeng, and GE Aijun. Ciphertext policy attribute-based encryption from lattices[C]. Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, Seoul, Korea, 2012: 16-17. doi: 10.1145/2414456.2414464. [17] AGRAWAL S, BOYEN X, VAIKUNTANATHAN V, et al. Fuzzy identity based encryption from lattices[C]. Proceedings of the 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 2012: 280-297. doi: 10.1007/978-3-642-30057-8_17. [18] STEHLÉ D, STEINFELD R, TANAKA K, et al. Efficient public key encryption based on ideal lattices[C]. Advances in CryptologyThe 15th Annual International Conference on the Theory and Application of Cryptology & Information Security, Tokyo, Japan, 2009: 617-635. doi: https://doi.org/ 10.1007/978-3-642-10366-7_36. [19] MICCIANCIO D and REGEV O. Worst-case to average-case reductions based on Gaussian measures[J]. SIAM Journal on Computing, 2007, 37(1): 267-302. doi: 10.1137/ S0097539705 447360. -
計(jì)量
- 文章訪問數(shù): 1614
- HTML全文瀏覽量: 326
- PDF下載量: 86
- 被引次數(shù): 0