幾乎完備高斯整數(shù)序列構造法
doi: 10.11999/JEIT170844 cstr: 32379.14.JEIT170844
-
(燕山大學信息科學與工程學院 秦皇島 066004) (河北省信息傳輸與信號處理重點實驗室 秦皇島 066004)
基金項目:
國家自然科學基金(61501395, 61671402),河北省自然科學基金 (F2015203150)
Construction of Nearly Perfect Gaussian Integer Sequences
-
LI Yubo CHEN Miao
Funds:
The National Natural Science Foundation of China (61501395, 61671402), The Natural Science Foundation of Hebei Province (F2015203150)
-
摘要: 該文提出基于偽隨機序列構造高斯整數(shù)序列的方法?;陂L度為 pm-1的p 元偽隨機序列,構造得到長度為pm-1的高斯整數(shù)序列,其階數(shù)為p-1。該類高斯整數(shù)序列具有幾乎完備的自相關性能,其異相自相關函數(shù)值僅存在p-2個非零值。并且該類高斯整數(shù)序列具有良好的平衡性,在無線通信與雷達系統(tǒng)中都有廣泛的應用前景。
-
關鍵詞:
- 高斯整數(shù)序列 /
- 偽隨機序列 /
- 幾乎完備 /
- 平衡性
Abstract: A construction of Gaussian integer sequences based on pseudo-random sequences. Gaussian integer sequences with period pm-1 whose degree p-1 are constructed from p-ary pseudo-random sequences with period pm-1. The presented sequences are nearly perfect Gaussian integer sequences with p-2 non-zero out-of-phase autocorrelation values. Moreover, these Gaussian integer sequences have balance property, as a result, they will be widely used in wireless communication and radar systems. -
[2] JUNGNICKEL D and POTT A. Perfect and almost perfect sequences[J]. Discrete Applied Mathematics, 1999, 95(1/3): 331-359. PARRAUD P. On the non-existence of (almost-) perfect quaternary sequences[J]. Lecture Notes in Computer Science, 2001, 2227: 210-218. [3] BOZTAS S and PARAMPALLI U. Nonbinary sequences with perfect and nearly perfect autocorrelations[C]. Proceedings of International Symposium on Information Theory (ISIT), Austin, 2010: 13-18. [4] CHANG Hohsuan, LIN Shiehchiang, and LEE Chongdao. A CDMA scheme based on perfect Gaussian integer sequences [J]. AEU-International Journal of Electronics and Communications, 2017, 75: 70-81. doi: 10.1016/j.aeue.2017. 03.008. [5] WANG Senhung, LI Chihpeng, CHANG Hohsuan, et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016, 64(1): 365-376. doi: 10.1109/TCOMM.2015.2498185. [6] FAN Pingzhi and DARNELL M. Maximual length sequences over Gaussian integers[J]. Electronics Letters, 1994, 30(16): 1286-1287. doi: 10.1049/el:19940913. [7] HU Weiwen, WANG Senhung, and LI Chihpeng. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074-6079. doi: 10.1109/TSP.2012.2210550. [8] PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length [J]. IEEE Signal Processing Letters, 2015, 22(8): 1040-1044. doi: 10.1109/LSP.2014. 2381642. [9] CHANG Hohsuan, LI Chihpeng, LEE Chongdao, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107-4115. doi: 10.1109/TIT.2015.2438828. [10] YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters. 2012, 19(10): 615-618. doi: 10.1109 /LSP.2012.2209642. [11] MA Xiuwen, WEN Qiaoyan, ZHANG Jie, et al. New perfect Gaussian integer sequences of periodic pq[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(11): 2290-2293. doi: 10.1587/transfun.E96.A.2290. [12] CHEN Xinjiao, LI Chunlei, and RONG Chunming. Perfect Gaussian integer sequences from cyclic difference sets[C]. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 115-119. doi: 10.1109/ISIT.2016. 7541272. [13] PENG Xiuping, REN Jiadong, XU Chengqian, et al. Gaussian integer sequences of degree-4 using difference sets [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(12): 2604-2608. doi: 10.1587/transfun.E99.A.2604. CHEN Xiaoyu, XU Chengqian, and LI Yubo. New Constructions of perfect Gaussian integer sequences[J]. Journal of Electronics & Information Technology, 2014, 36(9): 2081-2085. doi: 10.3724/SP.J.1146.2013.01697. LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics & Information Technology, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276. LIU Tao, XU Chengqian, and LI Yubo. Construction of zero correlation zone Gaussian integer sequence sets based on difference sets[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT 161177. [17] LEE Chongdao, HUANG Yupei, CHANG Yaotsu, et al. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881-885. doi: 10.1109/LSP.2014.2375313. [18] LEE Chongdao, LI Chihpeng, CHANG Hohsuan, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542-1552. doi: 10.1049/ iet-com.2015.1144. [19] LEE Chongdao and HONG Shaohua. Generation of long perfect Gaussian integer sequences[J]. IEEE Signal Processing Letters, 2017, 24(4): 515-519. doi: 10.1109/LSP. 2017.2674972. [20] LEE Chondao and CHEN Yanhaw. Families of Gaussian integer sequences with high energy efficiency[J]. IET Communications, 2016, 10(17): 2416-2421. doi: 10.1049/ iet-com.2016.0404. [21] GOLOMB W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar[M]. Camridge University Press, 2005: 152-154. [22] WANG Senhung, LI Chihpeng, LEE Kuanchou, et al. A novel low-complexity precoded OFDM system with reduced PAPR [J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1366-1376. doi: 10.1109/TSP.2015.2389751. [23] WANG Senhung and LI Chihpeng. Novel comb spectrum CDMA system using perfect Gaussian integer sequences[C]. 2015 IEEE Global Communications Conference, GLOBECOM, San Diego, USA, 2015: 1-6. -
計量
- 文章訪問數(shù): 1325
- HTML全文瀏覽量: 300
- PDF下載量: 369
- 被引次數(shù): 0