基于改進(jìn)Walsh-Hadamard變換的(n,1,m)卷積碼盲識(shí)別
doi: 10.11999/JEIT170605 cstr: 32379.14.JEIT170605
-
1.
(海軍航空大學(xué)信息融合研究所 煙臺(tái) 264001) ②(海軍航空大學(xué)電子信息工程系 煙臺(tái) 264001)
國(guó)家自然科學(xué)基金(91538201),泰山學(xué)者工程專項(xiàng)經(jīng)費(fèi)(st201511020)
Blind Recognition of (n,1,m) Convolutional Codes Based on Modified Walsh-Hadamard Transform
-
1.
(Institute of Information Fusion, Naval Aeronautical University, Yantai 264001, China)
-
2.
(Institute of Information Fusion, Naval Aeronautical University, Yantai 264001, China)
The National Natural Science Foundation of China (91538201), The Special Fund of Taishan Scholars Project (st201511020)
-
摘要: 針對(duì)高誤碼率情況下(n,1,m)卷積碼的盲識(shí)別問(wèn)題,該文提出一種新的基于改進(jìn)Walsh-Hadamard變換(Walsh-Hadamard Transform, WHT)的方法。首先將原問(wèn)題等效為多路1/2碼率卷積碼的盲識(shí)別問(wèn)題,并建立關(guān)于其生成多項(xiàng)式系數(shù)的線性方程組。然后分析了現(xiàn)有基于WHT的方法直接求解該方程組所存在的不足,重新建立更穩(wěn)健的判決門限,同時(shí)通過(guò)縮小解的取值范圍降低計(jì)算量,進(jìn)而在求得正確解向量的同時(shí)完成對(duì)碼長(zhǎng)的識(shí)別。最后,將多路等效1/2碼率卷積碼的生成多項(xiàng)式按一定條件組合,得到(n,1,m)卷積碼的生成多項(xiàng)式矩陣。仿真結(jié)果驗(yàn)證了所提方法的有效性,且性能優(yōu)于傳統(tǒng)方法。
-
關(guān)鍵詞:
- 信道編碼 /
- 卷積碼 /
- 盲識(shí)別 /
- Walsh-Hadamard變換
Abstract: Considering the blind recognition of (n,1,m) convolutional codes at high bit error rate, a novel method based on modified Walsh-Hadamard Transform (WHT) is presented. First, the original issue is equivalent to the blind recognition of several 1/2 rate convolutional codes, and a system of linear equations for generating polynomial coefficients is established. Disadvantages of the existing methods based on WHT are analyzed, after which a more robust decision threshold is deduced, with a reduction in computational complexity by limiting the range of roots, and then the code length is recognized while the correct solution vector is found. Finally, the generator polynomial matrix of (n,1,m) convolutional codes is obtained by combining the generator polynomial of the equivalent 1/2 rate convolutional codes. The simulation results verify the effectiveness of the proposed method, which has a better performance when comparing to the traditional method.-
Key words:
- Channel coding /
- Convolutional codes /
- Blind recognition /
- Walsh-Hadamard Transform (WHT)
-
MOOSAVI R and LARSSON E G. Fast blind recognition of channel codes[J]. IEEE Transactions on Communications, 2014, 62(5): 1393-1405. doi: 10.1109/TCOMM.2014.050614. 130297. YU P D, PENG H, and LI J. On blind recognition of channel codes within a candidate set[J]. IEEE Communications Letters, 2016, 20(4): 736-739. doi: 10.1109/LCOMM.2016. 2525759. CHEN W G and WU G. Blind recognition of (n-1)/n rate punctured convolutional encoders in a noisy environment[J]. Journal of Communications, 2015, 10(4): 260-267. doi: 10.12720/jcm.10.4.260-267. YARDI A D, VIJAYAKUMARAN S, and KUMAR A. Blind reconstruction of binary cyclic codes from unsynchronized bit stream[J]. IEEE Transactions on Communications, 2016, 64(7): 2693-2706. doi: 10.1109/TCOMM.2016.2561931. QIN J, HUANG Z, LIU C, et al. Novel blind recognition algorithm of frame synchronization words based on soft-decision in digital communication systems[J]. PLOS ONE, 2015, 10(7): 1-8. doi: 10.1371/journal.pone.0132114. SOTEH A and BIZAKI H. On the analytical solution of rank problem in the convolutional code identification context[J]. IEEE Communications Letters, 2016, 20(3): 442-445. doi: 10.1109/LCOMM.2016.2519519. WANG Y, WANG F H, and HUANG Z T. Blind recognition of (n,k,m) convolutional code based on local decision in a noisy environment[C]. International Conference on Automation, Mechanical Control and Computational Engineering, Jinan, China, 2015: 554-559. 劉建成, 楊曉靜, 張玉. 基于改進(jìn)歐幾里德算法的(n,1,m)卷積碼識(shí)別[J]. 探測(cè)與控制學(xué)報(bào), 2012, 34(1): 64-68. doi: 10.3969/j.issn.1008-1194.2012.01.015. LIU Jiancheng, YANG Xiaojing, and ZHANG Yu. Recognition of (n,1,m) convolutional code based on improved Euclidean algorithm[J]. Journal of Detection & Control, 2012, 34(1): 64-68. doi: 10.3969/j.issn.1008-1194.2012.01.015. 鄒艷, 陸佩忠. 關(guān)鍵方程的新推廣[J]. 計(jì)算機(jī)學(xué)報(bào), 2006, 29(5): 711-718. doi: 10.3724/SP.J.1146.2012.00497. ZOU Yan and LU Peizhong. A new generalization of key equation[J]. Journal of Computers, 2006, 29(5): 711-718. doi: 10.3724/SP.J.1146.2012.00497. 劉健, 王曉君, 周希元. 基于 Walsh-Hadamard 變換的卷積碼盲識(shí)別[J]. 電子與信息學(xué)報(bào), 2010, 32(4): 884-888. doi: 10.3724/SP.J.1146.2012.00497. LIU Jian, WANG Xiaojun, and ZHOU Xiyuan. Blind recognition of convolutional coding based on Walsh- Hadamard transform[J]. Journal of Electronics Information Technology, 2010, 32(4): 884-888. doi: 10.3724/ SP.J.1146.2012.00497. 張岱, 張玉, 楊曉靜, 等. 基于分段抽取軟判決加權(quán)Walsh Hadamard 變換的卷積碼識(shí)別算法[J]. 兵工學(xué)報(bào), 2015, 36(12): 2298-2305. doi: 10.3969/j.issn.1000-1093.2015. 12.012. ZHANG Dai, ZHANG Yu, YANG Xiaojing, et al. An algorithm for convolutional codes recognition based on sectionally extracting soft-decision weighted Walsh Hadamard transform[J]. Acta Armamentarii, 2015, 36(12): 2298-2305. doi: 10.3969/j.issn.1000-1093.2015. 12.012. 解輝, 王豐華, 黃知濤. 基于最大似然檢測(cè)的(n,1,m)卷積碼盲識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1671-1676. doi: 10.3724/SP.J.1146.2012.01578. XIE Hui, WANG Fenghua, and HUANG Zhitao. Blind recognition of (n,1,m) convolutional code based on maximum likelihood detection[J]. Journal of Electronics Information Technology, 2013, 35(7): 1671-1676. doi: 10.3724/SP.J.1146. 2012.01578. LIN S and COSTELLOD J著. 晏堅(jiān), 何元智, 潘亞漢, 等譯. 差錯(cuò)控制編碼[M]. 北京: 機(jī)械工業(yè)出版社, 2007: 300-321. LIN S and COSTELLOD J. YAN Jian, HE Yuanzhi, PAN Yahan, et al. Error Control Coding[M]. Beijing: China Machine Press, 2007: 300-321. 楊曉煒, 甘露. 基于Walsh-Hadamard 變換的線性分組碼參數(shù)盲估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2012, 34(7): 1642-1646. doi: 10.3724/SP.J.1146.2011.01311. YANG Xiaowei and GAN Lu. Blind estimation algorithm of the linear block codes parameters based on WHT[J]. Journal of Electronics Information Technology, 2012, 34(7): 1642-1646. doi: 10.3724/SP.J.1146.2011.01311. HAYKIN S. Communication Systems[M]. New York, USA: John Wiley Sons, Inc., 2001: 349-352. XIA Tian and WU H C. Novel blind identification of LDPC codes using average LLR of syndrome a posteriori probability [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 352-355. doi: 10.1109/TSP.2013.2293975. -
計(jì)量
- 文章訪問(wèn)數(shù): 1364
- HTML全文瀏覽量: 178
- PDF下載量: 144
- 被引次數(shù): 0