基于子空間的三階多項(xiàng)式相位信號(hào)快速稀疏分解算法
doi: 10.11999/JEIT170593 cstr: 32379.14.JEIT170593
-
2.
(重慶大學(xué)飛行器測(cè)控與通信教育部重點(diǎn)實(shí)驗(yàn)室 重慶 400044)
-
3.
(重慶電子工程職業(yè)學(xué)院軟件學(xué)院 重慶 401331)
重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1602909, KJ1503004),國(guó)家自然科學(xué)基金(61371164),重慶電子工程職業(yè)學(xué)院智能機(jī)器技術(shù)研究中心(XJPT201705)
A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace
-
2.
(Key Laboratory of Aerocraft Tracking Telemetering &
-
3.
(School of Software, Chongqing College of Electronic Engineering, Chongqing 401331, China)
The project of ChongQing municipal education Commission (KJ1602909, KJ1503004), The National Natural Science Foundation of China (61371164), Intelligent Robot Techndogy Research Center of Electronic Engineering (XJPT201705)
-
摘要: 針對(duì)稀疏分解冗余字典中原子數(shù)量龐大的缺點(diǎn),該文提出一種三階多項(xiàng)式相位信號(hào)的快速稀疏分解算法。該算法根據(jù)三階多項(xiàng)式相位信號(hào)的特點(diǎn),把原有信號(hào)變換成兩個(gè)子空間信號(hào),并根據(jù)這兩個(gè)子空間信號(hào)構(gòu)建相應(yīng)的冗余字典,然后采用正交匹配追蹤法來(lái)完成其稀疏分解,最后利用稀疏分解原理完成原有信號(hào)的稀疏分解。該算法把原有信號(hào)變換成兩個(gè)不同子空間信號(hào),構(gòu)建了兩個(gè)不同的冗余字典,對(duì)比采用一個(gè)冗余字典庫(kù),這種采用兩個(gè)冗余字典的算法大大減少了原子數(shù)量,并且通過(guò)快速傅里葉變換,在一個(gè)冗余字典進(jìn)行稀疏分解時(shí),同時(shí)找到另一個(gè)冗余字典中的最匹配的原子。因此該算法通過(guò)減少原子數(shù)量和采用快速傅里葉變換大大加快了稀疏分解速度。實(shí)驗(yàn)結(jié)果表明,相比于采用Gabor原子構(gòu)建的冗余字典,采用匹配追蹤算法與遺傳算法及最近提出的基于調(diào)制相關(guān)劃分的快速稀疏分解,它的稀疏分解速度更快,并且具有更好的收斂性。
-
關(guān)鍵詞:
- 三階多項(xiàng)式相位信號(hào) /
- 子空間 /
- 快速傅里葉變換 /
- 正交匹配追蹤 /
- 稀疏分解
Abstract: In view of the defect for large number of atoms in the over-complete dictionary during sparse decomposition, this paper presents a fast sparse decomposition algorithm for three-order polynomial phase signal based on subspace. According to the characteristic of three-order polynomial phase signal, the original signal is transformed into two subspace signals, then the atoms are structured based on the two subspace signals in the over-complete dictionary, and the two subspace signals are sparsely decomposed by using orthogonal matching pursuit algorithm. Finally, the sparse decomposition for the original signal is completed by using the theory of the sparse decomposition. In the algorithm, three-order polynomial phase signal is transformed into two subspace signals, and two over-complete dictionaries are structured based on the two subspace signals. Compared to one over-complete dictionary, the atoms are reduced enormously by using two over-complete dictionaries in the algorithm, and one matching atom can be obtained in one over-complete dictionary when another matching atom in another over-complete dictionary is obtained by using fast Fourier transform. Therefore the method can sparsely decompose three-order polynomial phase signal with low computational complexity by reducing the atoms and using fast Fourier transform. Simulation results show that the computational efficiency of the proposed method is better than that of using Gabor atoms, genetic algorithm and the algorithm based on modulation correlation partition, and the sparsity is better. -
OU G J , YANG S Z, DENG J X, et al. A refined estimator of multicomponent third-Order polynomial phase signals[J]. IEICE Transactions on Communications, 2016,E99-B(1): 143-151. doi: 10.1587/transcom.2015EBP3131. DJUROVI I and SIMEUNOVI M. Parameter estimation of non-uniform sampled polynomial-phase signals using the HOCPF-WD[J]. Signal Processing, 2015, 106(1): 253-258. doi: 10.1016/j.sigpro.2014.08.007. SIMEUNOVI M and DJUROVI I. Parameter estimation of multicomponent 2D polynomial-phase signals using the 2D PHAF-based approach[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 771-782. doi: 10.1109/TSP.2015.2491887. DENG Z, XU R, ZHANG Y, et al. Compound time-frequency domain method for estimating parameters of uniform- sampling polynomial-phase signals on the entire identifiable region[J]. IET Signal Processing, 2016, 10(7): 743-751. doi: 10.1049/iet-spr.2015.0361. RAKOVI P, SIMEUNOVI M, and DJUROVI I. On improvement of joint estimation of DOA and PPS coefficients impinging on ULA[J]. Signal Processing, 2017, 134: 209-213. doi: 10.1016/j.sigpro.2016.12.015. LI Y, WU R, XING M, et al. Inverse synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar Sonar Naving, 2008, 2(6): 395-403. doi: 10.1049/iet-rsn: 20070101. WANG Yong and JIANG Yicheng. ISAR imaging of a ship target using product high-order matched-phase transform[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 658-661. doi: 10.1109/LGRS.2009.2013876. OSHEA P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 385-393. doi: 10.1109/TSP.2003.821097. 歐國(guó)建, 楊士中, 蔣清平, 等. 一種三階多項(xiàng)式相位信號(hào)去噪的字典學(xué)習(xí)算法[J]. 電子與信息學(xué)報(bào), 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726. OU G J, YANG S Z, JIANG Q P, et al. A dictionary learning algorithm for denoising cubic phase signal[J]. Journal of Electronics Information Technology, 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726. JAFARI M G and PLUMBLEY M D. Fast dictionary learning for sparse representations of speech signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1025-1031. doi: 10.1109/JSTSP.2011.2157892. ZHAO Y, WU Z, YANG Z, et al. A novel signal sparse decomposition based on modulation correlation partition[J]. Neurocomputing, 2016, 171(1): 736-743. doi: 10.1016/j.neucom.2015.07.013. MOHAMMADI M R, FATEMIZADEH E, and MAHOOR M H. Non-negative sparse decomposition based on constrained smoothed norm[J]. Signal Processing, 2014, 100: 4250. doi: 10.1016/j.sigpro.2014.01.010. MARTI-LOPEZA F and KOENIGB T. Approximating method of frames[J]. Digital Signal Processing, 2003, 13(3): 519-529. doi: 10.1016/S1051-2004(02)00024-6. GORODNITSKY I F and BHASKAR D R. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616. doi: 10.1109/78.558475. CHEN S, DONOHO D, and SAUNDERS M. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1999, 20(1): 33-61. doi: 10.1137/S1064827596304010. MOHAMED A and DAVATZIKOS C. Shape representation via best orthogonal basis selection[C]. International Conference on Medical Image Computing Computer- Assisted Intervention, 2004, 3216: 225-233. doi: 10.1007/978-3-540-30135-6_28. MALLAT S and ZHANG Z. Matching pursuits with time- frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082. 趙學(xué)軍, 李育珍, 雷書彧. 基于遺傳算法優(yōu)化的稀疏表示圖像融合算法[J]. 北京郵電大學(xué)學(xué)報(bào), 2016, 39(2): 73-76. doi: 10.13190/j.jbupt.2016.02.015. ZHAO Xuejun, LI Yuzhen and LEI Shuyu. An Image fusion method with sparse representation based on genetic algorithm optimization[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(2): 73-76. doi: 10. 13190/j.jbupt.2016.02.015. 全盛榮, 張?zhí)祢U, 王俊霞, 等. 基于稀疏分解的SFM信號(hào)的時(shí)頻分析方法[J]. 電子技術(shù)應(yīng)用, 2016, 42(6): 87-90. doi: 10. 16157/j.issn.0258-7998.2016.06.024. QUAN Shengrong, ZHANG Tianqi, WANG Junxia, et al. A new time-frequency analysis method of sinusoidal frequency modulation signals based on sparse decomposition[J]. Application of Electronic Technique, 2016, 42(6): 87-90. doi: 10.16157/j.issn.0258-7998.2016.06.024. 李應(yīng), 陳秋菊. 基于優(yōu)化的正交匹配追蹤聲音事件識(shí)別[J]. 電子與信息學(xué)報(bào), 2017, 39(1): 183-190. doi: 10.11999/JEIT160120. LI Ying and CHEN Qiuju. Sound event recognition based on optimized orthogonal matching pursuit[J]. Journal of Electronics Information Technology, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120. 王麗, 馮燕. 基于粒子群優(yōu)化的圖像稀疏分解算法研究[J]. 計(jì)算機(jī)仿真, 2015, 32(11): 363-367. doi: 10.3969/j.issn.1006-9348.2015.11.080. WANG Li and FENG Yan. Sparse decomposition of images based on particle swarm optimization[J]. Computer Simulation, 2015, 32(11): 363-367. doi: 10.3969/j.issn.1006-9348.2015.11.080. 王在磊, 和紅杰, 王建英, 等. 基于核心原子庫(kù)和FHT的圖像MP稀疏分解快速算法[J]. 鐵道學(xué)報(bào), 2012, 34(9): 51-57. doi: 10.3969/j.issn.1001-8360.2012.09.009. WANG Zailei, HE Hongjie, WANG Jianying, et al. Fast algorithm for image MP sparse decomposition based on FHT and core dictionary[J]. Journal of the China Railway Society, 2012, 34(9): 51-57. doi: 10.3969/j.issn.1001-8360.2012.09.009. 邵君, 尹忠科, 王建英, 等. 信號(hào)稀疏分解中過(guò)完備原子庫(kù)的集合劃分[J]. 鐵道學(xué)報(bào), 2006, 28(1): 68-71. doi: 10.3321/j.issn:1001-8360.2006.01.015. SHAO Jun, YIN Zhongke, WANG Jianying, et al. Set partitioning of the over-complet dictionary in signal sparse decomposition[J]. Journal of the China Railway Society, 2006, 28(1): 68-71. doi: 10.3321/j.issn:1001-8360.2006.01.015. 王聰, 徐敏強(qiáng), 李志成. 齒輪箱故障診斷中的正交匹配追蹤算法[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào) , 2017, 49(4): 126-130. doi: 10. 11918/j.issn.0367-6234.201505053. WANG Cong, XU Minqiang, and LI Zhicheng. Gearbox fault diagnosis based on orthogonal matching pursuit algorithm[J]. Journal of Harbin of Technology, 2017, 49(4): 126-130. doi: 10.11918/j.issn.0367-6234.201505053. WU Y, SO H C, and LIU H. Subspace-based algorithm for parameter estimation of polynomial phase signals[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4977-4983. doi: 10.1109/TSP.2008.927457. -