解密成本為常數(shù)的具有追蹤性的密文策略屬性加密方案
doi: 10.11999/JEIT170198 cstr: 32379.14.JEIT170198
-
1.
(空軍電子技術(shù)研究所 北京 100195) ②(31008部隊 北京 100036)
基金項目:
國家973計劃項目(2013CB338001)
Traceable Ciphertext-policy Attribute-based Encryption Scheme with Constant Decryption Costs
-
1.
(Electronic Technology Institute of Air Force, Beijing 100195, China)
-
2.
(31008 Force, Beijing 100036, China)
Funds:
The National 973 Program of China (2013CB 338001)
-
摘要: 該文針對單調(diào)訪問結(jié)構(gòu)提出了一個解密成本為常數(shù)的具有追蹤性的密文策略屬性加密(CP-ABE)方案,該方案基于合數(shù)階雙線性群實現(xiàn)了標(biāo)準(zhǔn)模型下的適應(yīng)安全性。在所有已知的追蹤性CP-ABE方案中,都使用線性秘密共享方案(LSSS)來表示單調(diào)訪問結(jié)構(gòu),并用LSSS矩陣加密明文數(shù)據(jù)。因此,其加密成本都隨著LSSS矩陣的大小成線性增長,同時解密成本則隨著滿足要求的屬性數(shù)量成線性增長。而在該文提出的追蹤性CP-ABE方案中,使用最小授權(quán)子集集合來表示單調(diào)訪問結(jié)構(gòu),并用該子集集合加密明文數(shù)據(jù)。因此,其加密成本隨著最小授權(quán)子集的集合大小成線性增長,對于某些單調(diào)訪問結(jié)構(gòu),該文方案具有更短的密文長度和更小的加密成本。最重要的是,該文方案進(jìn)行解密時,只需要3個雙線性對操作和2個指數(shù)操作,解密成本為常數(shù),實現(xiàn)了更快更高效的數(shù)據(jù)解密。最后基于合數(shù)階雙線性群下的3個靜態(tài)假設(shè)對方案進(jìn)行了安全性證明,并進(jìn)行了性能分析與實驗驗證。
-
關(guān)鍵詞:
- 密文策略屬性加密 /
- 追蹤性 /
- 最小授權(quán)子集 /
- 常數(shù)成本的解密
Abstract: This paper puts forward a traceable Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme for Monotone Access Structure (MAS), which is proved secure adaptively in the standard model by using composite order bilinear groups. To date, for all traceable CP-ABE schemes, the MAS is represented by the Linear Secret Sharing Scheme (LSSS) and then the data are encrypted by using the corresponding LSSS matrix. Therefore, their encryption costs are linear with the size of the LSSS matrix, and the decryption costs are linear with the number of qualified rows in the LSSS matrix. However, in the proposed traceable CP-ABE scheme, the MAS is represented by the set of minimal authorized set and then the data are encrypted by using the corresponding set. Therefore, the encryption costs are polynomial with the number of minimal authorized set, and for some access policies, the proposed scheme may have shorter ciphertext and lower encryption costs. In addition, the most important thing is that the proposed decryption needs only three bilinear pairing computations and two exponent computations, which improves the efficiency extremely. Finally, the full security proof of the proposed scheme is given by using three static assumptions along with the detailed performance analysis and experiment validation. -
SAHAI A and WATERS B. Fuzzy Identity-Based Encryption [M]. Heidelberg, Berlin: Springer, 2005: 457-473. doi: 10.1007 /11426639_27. GOYAL V, PANDEY O, SAHAI A, et al. Attribute-based encryption for fine-grained access control of encrypted data[C]. Proceedings of ACM Conference on Computer and Communication Security, Alexandria, VA, USA, 2006: 89-98. BETHENCOURT J, SAHAI A, and WATERS B. Ciphertext-policy attribute-based encryption[C]. IEEE Symposium on Security and Privacy, Oakland, CA, USA, 2007: 321-334. YADAV U C. Ciphertext-policy attribute-based encryption with hiding access structure[C]. 2015 IEEE International Advance Computing Conference (IACC), Bangalore, India, 2015: 6-10. WANG M, ZHANG Z, and CHEN C. Security analysis of a privacy-preserving decentralized ciphertext-policy attribute- based encryption scheme[J]. Concurrency Computation Practice Experience, 2016, 28(4): 1237-1245. doi: 10.1002/ cpe.3623. NARUSE T, MOHRI M, and SHIRAISHI Y. Provably secure attribute-based encryption with attribute revocation and grant function using proxy re-encryption and attribute key for updating[J]. Human-centric Computing and Information Sciences, 2015, 5(1): 1-13. doi: 10.1186/s13673-015-0027-0. LEWKO A, OKAMOTO T, SAHAI A, et al. Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption[M]. Heidelberg, Berlin: Springer, 2010: 62-91. LIU Z, CAO Z, and WONG D. Traceable ciphertext-policy attribute-based encryption supporting any monotone access structures[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(1): 76-88. BONEH D and BOYEN X. Short signatures without random oracles[J]. Lecture Notes in Computer Science, 2004, 3027(2): 56-73. doi: 10.1007/978-3-540-24676-3_4. NING J, CAO Z, DONG X, et al. Large Universe Ciphertext- Policy Attribute-based Encryption with Traceability[M]. Wroclaw, Poland: Springer, 2014: 55-72. ROUSELAKIS Y and WATERS B. Practical constructions and new proof methods for large universe attribute-based encryption[C]. ACM Sigsac Conference on Computer Communications Security, Berlin: Germany, 2013: 463-474. ZHANG Y, LI J, ZHENG D, et al. Accountable Large- Universe Attribute-based Encryption Supporting Any Monotone Access Structures[M]. Heidelberg, Berlin: Springer, 2016: 509-524. EMURA K, MIYAJI A, NOMURA A, et al. A ciphertext- policy attribute-based encryption scheme with constant ciphertext length[C]. International Conference on Information Security Practice and Experience. Springer, Berlin: Heidelberg, 2009: 13-23. CHEN C, ZHANG Z, and FENG D. Efficient Ciphertext Policy Attribute-Based Encryption with Constant-Size Ciphertext and Constant Computation-Cost[M]. Heidelberg, Berlin: Springer, 2011: 84-101. HERRANZ J, LAGUILLAUMIE F, and RAFOLS C. Constant size ciphertexts in threshold attribute-based encryption[C]. International Conference on Practice and Theory in Public Key Cryptography. India, 2010: 19-34. HOHENBERGER S and WATERS B. Attribute-Based Encryption with Fast Decryption[M]. Heidelberg, Berlin: Springer, 2013: 162-179. RAO Y S and DUTTA R. Decentralized Ciphertext-Policy Attribute-Based Encryption Scheme with Fast Decryption [M]. Heidelberg, Berlin: Springer, 2013: 66-81. CHEN P, WANG X, and SU J. A Hierarchical Identity-based Signature from Composite Order Bilinear Groups[M]. Heidelberg, Berlin: Springer, 2015. -
計量
- 文章訪問數(shù): 1309
- HTML全文瀏覽量: 126
- PDF下載量: 180
- 被引次數(shù): 0