基于DBSCAN子空間匹配的蜂窩網(wǎng)室內(nèi)指紋定位算法
doi: 10.11999/JEIT160768 cstr: 32379.14.JEIT160768
國(guó)家自然科學(xué)基金(61301126),長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1299),重慶市基礎(chǔ)與前沿研究計(jì)劃(cstc2013jcyjA 40041, cstc2015jcyjBX0065),重慶郵電大學(xué)青年科學(xué)研究項(xiàng)目(A2013-31)
DBSCAN Based Subspace Matching for Indoor Cellular Network Fingerprint Positioning Algorithm
The National Natural Science Foundation of China (61301126), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Fundamental and Frontier Research Project of Chongqing (cstc2013jcyjA40041, cstc2015jcyjBX0065), The Young Science Research Program of Chongging University of Posts and Telecommunications (A2013-31)
-
摘要: 針對(duì)無(wú)線(xiàn)信道動(dòng)態(tài)衰落特性引起的蜂窩網(wǎng)室內(nèi)定位誤差較大的問(wèn)題,該文提出基于密度的空間聚類(lèi)(Density Based Spatial Clustering of Applications with Noise, DBSCAN)子空間匹配算法,有效剔除大誤差點(diǎn),提高定位精度。首先通過(guò)劃分信號(hào)空間,構(gòu)建多個(gè)子空間,在子空間中利用加權(quán)K近鄰匹配算法(Weighted K Nearest Neighbor, WKNN)估計(jì)出目標(biāo)位置;然后利用DBSCAN對(duì)估計(jì)位置進(jìn)行聚類(lèi)以剔除異常點(diǎn);最后結(jié)合概率模型確定最終估計(jì)位置。實(shí)驗(yàn)結(jié)果表明,基于DBSCAN的子空間匹配算法能有效剔除大誤差點(diǎn),提高蜂窩網(wǎng)室內(nèi)定位系統(tǒng)的整體性能。Abstract: For the sake of reducing the indoor localization errors caused by dynamic signal fading in cellular network, this paper propose a novel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) based subspace matching algorithm for indoor localization, which can improve the localization accuracy by eliminating the location with large errors. Specifically, the signal space is firstly divided into several subspaces, where a position estimation can be obtained respectively using the Weighted K Nearest Neighbors (WKNN) approach. Then, DBSCAN is applied to the position coordinates obtained from each subspace which eliminates the outliers. Finally, the location is estimated based on probability analysis. Experimental results show that the proposed approach can improve the location accuracy by eliminating the location with large errors.
-
THI H N V, KEUN H R, and NAMKYU P. A method for predicting future location of mobile user for location-based services system[J]. Computers Industrial Engineering, 2009, 57(1): 91-105. doi: 10.1016/j.cie.2008.07.009. KUNG H Y, CHAISIT S, and PHUONG N T M. Optimization of an RFID location identification scheme based on the neural network[J]. International Journal of Communication Systems, 2015, 28(4): 625-644. doi: 10.1002/ dac.2692. 吳楠, 王旭東, 胡晴晴, 等. 基于多LED的高精度室內(nèi)可見(jiàn)光定位方法[J]. 電子與信息學(xué)報(bào), 2015, 37(3): 727-732. doi: 10.11999/JEIT140725. WU Nan, WANG Xudong, HU Qingqing, et al. Multiple LED based high accuracy indoor visible light positioning scheme[J]. Journal of Electronics Information Technology, 2015, 37(3): 727-732. doi: 10.11999/JEIT140725. WANG Yixin, YE Qiang, CHENG Jie, et al. RSSI-based bluetooth indoor localization[C]. International Conference on Mobile Ad-hoc and Sensor Networks (MSN), Shenzhen, 2015: 165-171. YANG Bo, LEI Yiqun, and YAN Bei. Distributed multi-human location algorithm using naive bayes classifier for a binary pyroelectric infrared sensor tracking system[J]. IEEE Sensors Journal, 2015, 16(1): 216-223. doi: 10.1109/ JSEN. 2015.2477540. 陳兵, 楊小玲. 一種基于概率密度的WLAN接入點(diǎn)定位的算法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 855-862. doi: 10.11999/ JEIT140661. CHEN Bing and YANG Xiaoling. A WLAN access point localization algorithm based on probability density[J]. Journal of Electronics Information Technology, 2015, 37(4): 855-862. doi: 10.11999/JEIT140661. WILLEMSEN T, KELLER F, and STERNBERG H. Concept for building a MEMS based indoor localization system[C]. International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, 2014: 1-10. WANG Jie, GAO Qinghua, YU Yan, et al. Toward robust indoor localization based on Bayesian filter using chirp-spread-spectrum ranging[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1622-1629. WANG Jie, GAO Qinghua, WANG Hongyu, et al. Device-free localization with multi-dimensional wireless link information[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 356-366. HE Jie, LI Shen, PAHLAVAN Kaveh, et al. A realtime testbed for performance evaluation of indoor TOA location system[C]. 2012 IEEE International Conference on Communications (ICC), Ottawa, 2012: 482-486. HARA Shinsuke, ANZAI Daisuke, YABU Tomofumi, et al. Analysis on TOA and TDOA location estimation performances in a cellular system[C]. 2011 IEEE International Conference on Communications (ICC), Kyoto, 2011: 1-5. LIU Congfeng, YANG Jie, and WANG Fengshuai. Joint TDOA and AOA location algorithm[J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 183-188. doi: 10.1109/JSEE.2013.00023. TIAN Zengshan, LIU Xindi, ZHOU Mu, et al. Mobility tracking by fingerprint-based KNN/PF approach in cellular networks[C]. 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, 2013: 4570-4575. MAHER P S and MALANEY R A. A novel fingerprint location method using ray-tracing[C]. Global Telecommunications Conference (GLOBECOM), Honolulu, 2009: 1-5. DRAWIL N, AMAR H, and BASIR O. Cellular network fingerprint localization simulation: A soft computing approach[C]. 2014 IEEE 80th Vehicular Technology Conference, Vancouver, 2014: 1-5. 范明, 孟曉峰. 數(shù)據(jù)挖掘概念與技術(shù)[M]. 第3版, 北京: 機(jī)械工業(yè)出版社, 2012: 307-309. FAN Ming and MENG Xiaofeng. Data Minging Concepts and Techniques[M]. Third Edition, Beijing, China Machine Press, 2012: 307-309. HONG J and OHTSUKI T. Device-free passive localization from signal subspace eigenvectors[C]. 2014 IEEE Global Communications Conference, Austin, 2014: 430-435. DING Genming, TAN Zhenhui, ZHANG Jinbao, et al. Regional propagation model based fingerprinting localization in indoor environments[C]. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, London, 2013: 291-295. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1468
- HTML全文瀏覽量: 222
- PDF下載量: 385
- 被引次數(shù): 0