改進(jìn)型極化碼混合自動請求重傳法
doi: 10.11999/JEIT160736 cstr: 32379.14.JEIT160736
基金項目:
國家自然科學(xué)基金重點(diǎn)項目(61231009),國家高863計劃項目(2015AA011709),上海市科委科技創(chuàng)新計劃(15511102602)
An Improved HARQ Scheme with Polar Codes
Funds:
The National Natural Science Foundation of China Key Program (61231009), The National 863 Program of China (2015AA011709), The Science and Technology Commission Foundation of Shanghai (15511102602)
-
摘要: 極化碼與混合自動請求重傳結(jié)合的傳輸方案適用于物聯(lián)網(wǎng)應(yīng)用的短數(shù)據(jù)包場景?,F(xiàn)有的極化碼與蔡司合并結(jié)合的傳輸方案能夠提供合并增益,但并未提供編碼增益。極化碼與增量冗余結(jié)合的傳輸方案能夠獲得更好的性能,但計算復(fù)雜度較高,不適用于短數(shù)據(jù)包場景。該文提出一種改進(jìn)型極化碼與混合自動請求重傳結(jié)合的傳輸方案。與現(xiàn)有的極化碼與蔡司合并結(jié)合的傳輸方案相比,當(dāng)碼率為1/2、重傳次數(shù)為1時,該方案能夠獲得額外的0.7 dB的編碼增益,與碼率為1/4的極化碼性能相近。該文所提方案的編譯碼復(fù)雜度相比于碼率為1/4的極化碼,降低了50%的復(fù)雜度。仿真結(jié)果驗證了該方案的有效性。
-
關(guān)鍵詞:
- 極化碼 /
- 短數(shù)據(jù)包 /
- 混合自動請求重傳
Abstract: Hybrid Automatic Repeat reQuest (HARQ) scheme with polar codes is suitable for short packets applied to Internet of Things (IoT). Existing HARQ scheme with Chase Combing (HARQ-CC) provides combining gain without coding gain. The HARQ scheme with Incremental Redundancy (HARQ-IR) achieves better performance with significantly high complexity, which is unacceptable for IoT applications. In this paper, an improved HARQ scheme with polar codes is proposed. The proposed coding scheme achieves 0.7 dB gain for code rate R=1/2 and retransmission time T=1 compared with HARQ-CC scheme and the performance of this scheme is approaching the polar codes with rate R=1/4. The encoding and decoding complexity of the proposed scheme is reduced by about 50% compared with the polar codes with rate R=1/4. Simulation results validate the effectiveness of this scheme.-
Key words:
- Polar codes /
- Short packets /
- Hybrid Automatic Repeat reQuest (HARQ)
-
GUBBI J, BUYYA R, and MARUSIC S. Internet of Things (IoT): A vision, architectural elements, and future directions [J]. Future Generation Computer Systems, 2013, 29(7): 1645-1660. doi: 10.1016/j.future.2013.01.010. ARIKAN E and TELATAR E. On the rate of channel polarization[C]. Proceedings of IEEE International Symposium on Information Theory, Seoul, Korea, 2009, 1493-1495. KORADA S B, SASOGLU E, and URBANKE R. Polar codes: Characterization of exponent, bounds, and constructions[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6253-6264. doi: 10.1109/TIT.2010.2080990. ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary- input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. doi: 10.1109/ TIT.2009.2021379. NIU K and CHEN K. CRC-aided decoding of polar codes[J]. IEEE Communications Letters, 2012, 16(10): 1668-1671. doi: 10.1109/LCOMM.2012.090312.121501. TAL I and VARDY A. List decoding of polar codes[C]. Proceedings of IEEE International Symposium on Information Theory Proceedings, Saint-Petersburg, Russia, 2011: 1-5. NIU K, CHEN K, LIN J R, et al. Polar codes: Primary concepts and practical decoding algorithms[J]. IEEE Communications Magazine, 2014, 52(7): 192-203. doi: 10. 1109/MCOM.2014.6852102. FRENGER P, PARKVALL S, and DAHLMAN E. Performance comparison of HARQ with chase combining and incremental redundancy for HSDPA[C]. Proceedings of IEEE Vehicular Technology Conference, Atlantic City, USA, 2001: 1829-1833. CHEN K, NIU K, HE Z Q, et al. Polar coded HARQ scheme with Chase combining[C]. Proceedings of IEEE Wireless Communications and Networking Conference, Istanbul, Turkey, 2014: 474-479. CHEN K, NIU K, and LIN J R. A Hybrid ARQ scheme based on polar codes[J]. IEEE Communications Letters, 2013, 17(10): 1996-1999. doi: 10.1109/LCOMM.2013.090213. 131670. SABER H and MARSLAND I. An incremental redundancy hybird ARQ via puncturing and extending of polar codes[J]. IEEE Transactions on Communications, 2015, 63(11): 3964-3973. doi: 10.1109/TCOMM.2015.2477082. GAL B L, LEROUX C, and JEGO C. Multi-gb/s software decoding of polar codes[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 349-359. doi: 10.1109/TSP.2014. 2371781. RAYMOND A J and GROSS W J. A scalable successive- cancellation decoder for polar codes[J]. IEEE Transactions on Signal Processing, 2014, 62(20): 5339-5347. doi: 10.1109/TSP. 2014.2347262. ZHANG L, ZHANG Z Y, WANG X B, et al. On the puncturing patterns for punctured polar codes[C]. IEEE International Symposium on Information Theory, Honolulu, USA, 2014: 121-125. SHIN D M, LIM S C, and YANG K. Design of length- compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593-2599. doi: 10.1109/TCOMM.2013.052013. 120543. TRIFONOV P. Efficient design and decoding of polar codes[J]. IEEE Transactions on Communications, 2012, 60(11): 3221-3227. doi: 10.1109/TCOMM.2012.081512. 110872. CHUNG S Y, RICHARDSON T J, and URBSNKE R L. Analysis of sumproduct decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657-670. doi: 10.1109 /18.910580. MORI R and TANAKA T. Performance of polar codes with the construction using density evolution[J]. IEEE Communications Letters, 2009, 13(7): 519-521. doi: 10.1109/ LCOMM.2009.090428. -
計量
- 文章訪問數(shù): 1123
- HTML全文瀏覽量: 214
- PDF下載量: 582
- 被引次數(shù): 0