一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種基于非負(fù)低秩稀疏圖的半監(jiān)督學(xué)習(xí)改進(jìn)算法

張濤 唐振民

張濤, 唐振民. 一種基于非負(fù)低秩稀疏圖的半監(jiān)督學(xué)習(xí)改進(jìn)算法[J]. 電子與信息學(xué)報(bào), 2017, 39(4): 915-921. doi: 10.11999/JEIT160559
引用本文: 張濤, 唐振民. 一種基于非負(fù)低秩稀疏圖的半監(jiān)督學(xué)習(xí)改進(jìn)算法[J]. 電子與信息學(xué)報(bào), 2017, 39(4): 915-921. doi: 10.11999/JEIT160559
ZHANG Tao, TANG Zhenmin. Improved Algorithm Based on Non-negative Low Rank and Sparse Graph for Semi-supervised Learning[J]. Journal of Electronics & Information Technology, 2017, 39(4): 915-921. doi: 10.11999/JEIT160559
Citation: ZHANG Tao, TANG Zhenmin. Improved Algorithm Based on Non-negative Low Rank and Sparse Graph for Semi-supervised Learning[J]. Journal of Electronics & Information Technology, 2017, 39(4): 915-921. doi: 10.11999/JEIT160559

一種基于非負(fù)低秩稀疏圖的半監(jiān)督學(xué)習(xí)改進(jìn)算法

doi: 10.11999/JEIT160559 cstr: 32379.14.JEIT160559
基金項(xiàng)目: 

國家自然科學(xué)基金(61473154)

Improved Algorithm Based on Non-negative Low Rank and Sparse Graph for Semi-supervised Learning

Funds: 

The National Natural Science Foundation of China (61473154)

  • 摘要: 該文針對基于非負(fù)低秩稀疏圖的半監(jiān)督學(xué)習(xí)算法不能準(zhǔn)確地描述數(shù)據(jù)結(jié)構(gòu)的問題,提出一種融合平滑低秩表示和加權(quán)稀疏約束的改進(jìn)算法。該算法分別對經(jīng)典算法的低秩項(xiàng)和稀疏項(xiàng)進(jìn)行改進(jìn),準(zhǔn)確地捕獲了數(shù)據(jù)的全局子空間結(jié)構(gòu)和局部線性結(jié)構(gòu)。在構(gòu)建目標(biāo)函數(shù)時(shí),使用對數(shù)行列式函數(shù)代替核范數(shù)平滑地估計(jì)秩函數(shù),同時(shí)利用形狀交互信息和有標(biāo)簽樣本的類別信息構(gòu)造加權(quán)稀疏約束正則項(xiàng)。然后通過帶有自適應(yīng)懲罰的線性交替方向方法求解目標(biāo)函數(shù)并采用有效的后處理方法重構(gòu)數(shù)據(jù)的圖結(jié)構(gòu),最后利用基于局部和全局一致性的半監(jiān)督分類框架完成學(xué)習(xí)任務(wù)。在ORL庫,Extended Yale B庫和USPS庫上的實(shí)驗(yàn)結(jié)果表明,該改進(jìn)算法提高了半監(jiān)督學(xué)習(xí)的準(zhǔn)確率。
  • 劉建偉, 劉媛, 羅雄麟. 半監(jiān)督學(xué)習(xí)方法[J]. 計(jì)算機(jī)學(xué)報(bào), 2015, 38(8): 1592-1617. doi: 10.11897/SP.J.1016.2015.01592.
    LIU Jianwei, LIU Yuan, and LUO Xionglin. Semi-supervised learning methods[J]. Chinese Journal of Computers, 2015, 38(8): 1592-1617. doi: 10.11897/SP.J.1016.2015.01592.
    ZHU X. Semi-supervised learning literature survey[R]. Madison: University of Wisconsin, 2006.
    LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi: 10.1109/TPAMI.2012.88.
    ZHUANG L S, GAO H Y, LIN Z C, et al. Non-negative low rank and sparse graph for semi-supervised learning[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2328-2335. doi: 10.1109/CVPR.2012.6247944.
    ZHENG Y G, ZHANG X G, YANG S Y, et al. Low-rank representation with local constraint for graph construction[J]. Neurocomputing, 2013, 122: 398-405. doi: 10.1016/j.neucom. 2013.06.013.
    TANG K W, LIU R S, SU Z X, et al. Structure-constrained low-rank representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12): 2167-2179. doi: 10.1109/TNNLS.2014.2306063.
    PENG Y, LU B L, and WANG S H. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning[J]. Neural Networks, 2015, 65: 1-17. doi: 10.1016/j.neunet.2015.01.001.
    MOHAN K and FAZEL M. Iterative reweighted algorithms for matrix rank minimization[J]. The Journal of Machine Learning Research, 2012, 13(1): 3441-3473.
    王斯琪, 馮象初, 張瑞, 等. 基于最大范數(shù)的低秩稀疏分解模型[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2601-2607. doi: 10. 11999/JEIT150468.
    WANG Siqi, FENG Xiangchu, ZHANG Rui, et al. Low-rank sparse decomposition model based on max-norm[J]. Journal of Electronics Information Technology, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468.
    FAZEL M, HINDI H, and BOYD S. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices[C]. Proceedings of the American Control Conference, Denver, USA, 2003, 3: 2156-2162. doi: 10.1109/ACC.2003.1243393.
    KANG Z, PENG C, and CHENG Q. Robust subspace clustering via smoothed rank approximation[J]. IEEE Signal Processing Letters, 2015, 22(11): 2088-2092. doi: 10.1109/ LSP.2015.2460737.
    LIN Z C, LIU R S, and SU Z X. Linearized alternating direction method with adaptive penalty for low-rank representation[C]. Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain, 2011: 612-620.
    ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]. Proceedings of the Advances in Neural Information Processing Systems, Cambridge, UK, 2004: 321-328.
    LIU B, JING L P, YU J, et al. Robust graph learning via constrained elastic-net regularization[J]. Neurocomputing, 2016, 171: 299-312. doi: 10.1016/j.neucom.2015.06.059.
    KANG Z, PENG C, CHENG J, et al. Logdet rank minimization with application to subspace clustering[J]. Computational Intelligence and Neuroscience, 2015, 824289, doi: 10.1155/2015/824289.
    LIN Z C, CHEN M M, and MA Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices [R]. UIUC Technical Report UILU-ENG-09-2215, 2009.
    LIU G C, LIN Z C, and YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010: 663-670.
    ELHAMIFAR E and VIDAL R. Sparse subspace clustering: algorithm,theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 34(11): 2765-2781. doi: 10.1109/TPAMI.2013.57.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1613
  • HTML全文瀏覽量:  143
  • PDF下載量:  460
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-05-28
  • 修回日期:  2016-09-23
  • 刊出日期:  2017-04-19

目錄

    /

    返回文章
    返回