基于成對用戶大規(guī)模MIMO兩跳中繼系統(tǒng)的最優(yōu)能效設(shè)計(jì)
doi: 10.11999/JEIT160245 cstr: 32379.14.JEIT160245
國家863計(jì)劃項(xiàng)目(2015AA01A703),國家自然科學(xué)基金(61372101, 61271018, 61671144) ,江蘇省科技計(jì)劃項(xiàng)目(BE2015156),江蘇省高校自然科學(xué)研究面上項(xiàng)目(16KJB510008)
Optimal Energy-efficient Design for Two-hop Massive MIMO Relaying Systems with Multi-pair Users
The National 863 Program of China (2015AA01A703), The National Natural Science Foundation of China (61372101, 61271018, 61671144), Research Project of Jiangsu Province (BE2015156), The Natural Science Research Project of Jiangsu Province for Colleges and Universities (16KJB510008)
-
摘要: 該文針對成對用戶大規(guī)模MIMO中繼系統(tǒng),研究了最優(yōu)能效準(zhǔn)則下的系統(tǒng)參數(shù)設(shè)計(jì)。在中繼采用最大比合并/最大比發(fā)射(MRC/MRT)預(yù)編碼方案下,借助于大數(shù)定律,推導(dǎo)出能效函數(shù)關(guān)于用戶發(fā)射功率、中繼發(fā)射功率和中繼天線數(shù)的解析表達(dá)式。根據(jù)能效函數(shù)性質(zhì),分別證明了全局最優(yōu)發(fā)射向量和最優(yōu)天線數(shù)的存在性和唯一性。為了求解最優(yōu)發(fā)射功率,利用分?jǐn)?shù)規(guī)劃,將原優(yōu)化問題轉(zhuǎn)換為等價(jià)的減法形式,進(jìn)而提出一種新的低復(fù)雜度迭代優(yōu)化算法,并求得最優(yōu)發(fā)射功率的閉合解。對于最優(yōu)天線數(shù),則利用Lambert W函數(shù),得到了能效最大時(shí)的最優(yōu)天線數(shù)閉合解。通過數(shù)值仿真,驗(yàn)證了所提功率優(yōu)化算法以極少迭代次數(shù)取得了接近最優(yōu)算法的性能,并驗(yàn)證了所給出的最優(yōu)天線數(shù)閉合解的精確性。
-
關(guān)鍵詞:
- 大規(guī)模多輸入多輸出 /
- 兩跳中繼 /
- 能效 /
- 發(fā)射功率 /
- 天線數(shù)
Abstract: The optimal system design based on maximizing the Energy Efficiency (EE) is investigated for the multi- pair massive Multiple-Input Multiple-Output (MIMO) relaying system. By virtue of the law of large numbers, an analytical expression of the involved EE function is derived with respect to the transmit power at the users and the relay, and the antenna number of the relay, when the Maximum Ratio Combining Maximum Ratio Transmission (MRC/MRT) precoding is adopted at the relay. The existences of a unique globally optimal transmit power vector and a unique globally optimal antenna number at relay are demonstrated separately by exploring the properties of the EE function. In order to obtain the optimal transmit power vector, the original fractional optimization problem is first transformed into an equivalent subtractive form by using the properties of fractional programming. Then, a low-complexity iterative algorithm is developed and the closed-form solution is deduced. Regarding the optimal number of relay antennas, a closed-form solution is also achieved by use of the Lambert W function. Numerical simulations show that the proposed power optimization algorithm converges to a near optimal solution only with a few numbers of iterations and the provided closed-form solution to the optimal number of relay antennas is also accurate.-
Key words:
- Massive MIMO /
- Two-hop relay /
- Energy Efficiency (EE) /
- Transmit power /
- Number of antennas
-
FEHSKE A, FETTWEIS G, MALMODIN J, et al. The global footprint of mobile communications: The ecological and economic perspective[J]. IEEE Communications Magazine, 2011, 49(8): 55-62. doi: 10.1109/MCOM.2011. 5978416. AUER G, GIANNINI V, DESSET C, et al. How much energy is needed to run a wireless network?[J]. IEEE Wireless Communications, 2011, 18(5): 40-49. doi: 10.1109/MWC. 2011.6056691. HUANG Y, ZHENG G, BENGTSSON M, et al. Distributed multicell beamforming design with limited intercell coordination[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 728-738. doi: 10.1109/TSP.2010.2089621. HE S W, HUANG Y, YANG L, et al. A multi-cell beamforming design by uplink-downlink max-min SINR duality[J]. IEEE Transactions on Wireless Communications, 2012, 11(8): 2858-2867. doi: 10.1109/TWC.2012.061912. 111553. LI H, SONG L, ZHU D, et al. Energy efficiency of large scale MIMO systems with transmit antenna selection[C]. IEEE International Conference on Communications (ICC), Budapest, 2013: 4641-4645. KIM Y, MIAO G, and HWANG T. Energy efficient pilot and link adaptation for mobile users in TDD multi-user MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 382-393. doi: 10.1109/TWC.2013.120113. 130677. BJORNSON E, SANGUINETTI L, HOYDIS J, et al. Designing multi-user MIMO for energy efficiency: When is massive MIMO the answer?[C]. IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, 2014: 242-247. WU J, RANGAN S, and ZHANG H. Green Communications: Theoretical Fundamentals, Algorithms, and Applications[M]. Boca Raton, FL, USA, CRC Press, 2012: 15-100. LARSSON E, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186-195. doi: 10. 1109/MCOM.2014.6736761. LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742-758. doi: 10.1109/JSTSP.2014.2317671. NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems [J]. IEEE Transactions on Communications, 2013, 61(4): 1436-1449. doi: 10.1109/TCOMM.2013.020413.110848. BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74-80. doi: 10.1109/ MCOM.2014.6736746. DOHLER M and LI Y. Cooperative Communications: Hardware, Channel and PHY[M]. Chichester, U.K., John Wiley Sons, 2010: 43-318. AGUSTIN A and VIDAL J. Amplify-and-forward cooperation under interference-limited spatial reuse of the relay slot[J]. IEEE Transactions on Wireless Communications, 2008, 7(5): 1952-1962. doi: 10.1109/TWC. 2008.070973. DING H, GE J, da COSTA D B, et al. A new efficient low-complexity scheme for multi-source multi-relay cooperative networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(2): 716-722. doi: 10.1109/TVT. 2010.2100416. RASHID U, TUAN H D, KHA H H, et al. Joint optimization of source precoding and relay beamforming in wireless MIMO relay networks[J]. IEEE Transactions on Communications, 2014, 62(2): 488-499. doi: 10.1109/TCOMM.2013.122013. 130239. SURAWEERA H A, NGO H Q, DUONG T Q, et al. Multi-pair amplify-and-forward relaying with very large antenna arrays[C]. IEEE International Conference on Communications, Budapest, 2013: 4635-4640. CUI H, SONG L, and JIAO B. Multi-pair two-way amplify- and-forward relaying with very large number of relay antennas[J]. IEEE Transactions on Wireless Communications, 2014, 13(5): 2636-2645. doi: 10.1109/TWC.2014.032514. 130885. LIU M, ZHANG J, and ZHANG P. Multipair two-way relay networks with very large antenna arrays[C]. IEEE Vehicular Technology Conference (VTC Fall), Vancouver, BC, 2014: 1-5. JIN S, LIANG X, WONG K K, et al. Ergodic rate analysis for multipair massive MIMO two-way relay networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1480-1491. doi: 10.1109/TWC.2014.2367503. ZHANG Q, JIN S, WONG K K, et al. Power scaling of uplink massive MIMO systems with arbitrary-rank channel means [J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 966-981. doi: 10.1109/JSTSP.2014.2324534. LI J, WANG D, ZHU P, et al. Spectral efficiency analysis of single-cell multi-user large-scale distributed antenna system [J]. IET Communications, 2014, 8(12): 2213-2221. doi: 10.1049/iet-com.2013.0855. MIAO G, HIMAYAT N, and LI G Y. Energy-efficient link adaptation in frequency-selective channels[J]. IEEE Transactions on Communications, 2010, 58(2): 545-554. doi: 10.1109/TCOMM.2010.02.080587. DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492-498. doi: 10.1287/ mnsc.13.7.492. 胡瑩, 黃永明, 俞菲, 等. 多用戶大規(guī)模 MIMO系統(tǒng)能效資源分配算法[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2198-2203. doi: 10.11999/JEIT150088. HU Y, HUANG Y, YU F, et al. Energy-efficient resource allocation based on multi-user massive MIMO system[J]. Journal of Electronics Information Technology, 2015, 37(9): 2198-2203. doi: 10.11999/JEIT150088. -
計(jì)量
- 文章訪問數(shù): 1447
- HTML全文瀏覽量: 158
- PDF下載量: 1123
- 被引次數(shù): 0