基于信號(hào)傳輸理論的Glitch物理不可克隆函數(shù)電路設(shè)計(jì)
doi: 10.11999/JEIT151312 cstr: 32379.14.JEIT151312
浙江省自然科學(xué)基金(LQ14F040001),國(guó)家自然科學(xué)基金(61404076, 61474068, 61274132),浙江省科技廳公益技術(shù)應(yīng)用研究(2015C31010)
Design of Glitch Physical Unclonable Functions Circuit Based on Signal Transmission Theory
The Zhejiang Provincial Natural Science Foundation of China (LQ14F040001), The National Natural Science Foundation of China (61404076, 61474068, 61274132), The ST Plan of Zhejiang Provincial Science and Technology Department (2015C31010)
-
摘要: 通過(guò)對(duì)信號(hào)傳輸理論、競(jìng)爭(zhēng)-冒險(xiǎn)現(xiàn)象和物理不可克隆函數(shù)(Physical Unclonable Functions, PUF)電路的研究,論文提出一種基于信號(hào)傳輸理論的毛刺型物理不可克隆函數(shù)電路(Glitch Physical Unclonable Functions, Glitch-PUF)方案。該方案首先根據(jù)偏差延遲的信號(hào)傳輸理論,推導(dǎo)出獲得穩(wěn)定毛刺輸出的電路級(jí)數(shù);然后利用組合邏輯電路的傳播延遲差異,結(jié)合1冒險(xiǎn)和0冒險(xiǎn)獲得具有毛刺的輸出波形,采用多級(jí)延遲采樣電路實(shí)現(xiàn)Glitch-PUF的輸出響應(yīng)。由于毛刺信號(hào)具有顯著的非線性特性,將其應(yīng)用于PUF電路可有效解決模型攻擊等問(wèn)題。最后在TSMC 65 nm CMOS工藝下,設(shè)計(jì)128位數(shù)據(jù)輸出的電路結(jié)構(gòu),Monte Carlo仿真結(jié)果表明Glitch-PUF電路具有良好的隨機(jī)性。
-
關(guān)鍵詞:
- 信息安全 /
- 物理不可克隆函數(shù)電路 /
- 信號(hào)傳輸理論 /
- Glitch型物理不可克隆函數(shù)
Abstract: In this paper, a Glitch-PUF circuit technique is proposed by taking into consideration various aspects i.e. the signal transmission theory, race and hazard phenomenon, and Physical Unclonable Functions (PUF). First and foremost, the glitch circuit is obtained under the signal transmission theory. Using the combinational logic circuit propagation delay difference which causes 1-hazard and 0-hazard, this feature is used to form output glitch waveform. This glitch is sampled by multistage delay sampling circuit. Due to the nonlinear characteristics of the Glitch, Glitch-PUF can thwart the modeling attack. Finally, under the TSMC 65 nm CMOS technology, a 128-bit output data Glitch-PUF circuit is designed. Monte Carlo simulation results show that the Glitch PUF circuit has better randomness. -
PAPPU R, RECHT B, TAYLOR J, et al. Physical one-way functions[J]. Science, 2002, 297(5589): 2026-2030. LIM D, LEE J W, GASSEND B, et al. Extracting secret keys from integrated circuits[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2005, 13(10): 1200-1205. LAO Y J and PARHI K K. Statistical analysis of MUX-based physical unclonable functions[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(5): 649-662. CAO Yuan, ZHANG Le, CHANG Chiphong, et al. A low- power hybrid RO PUF with improved thermal stability for lightweight applications[J]. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 2015, 34(7): 1143-1147. WIECZOREK P Z and GOLOFIT K. Metastability occurrence based physical unclonable functions for FPGAs[J]. Electronics Letters, 2014, 50(4): 281-283. YING S, HOLLEMAN J, and OTIS B P. A digital 1.6 pJ/bit chip identification circuit using process variations[J]. IEEE Journal of Solid-State Circuits, 2008, 41(3): 69-77. HOLCOMB D E, BURLESON W P, and FU K. Power-up SRAM state as an identifying fingerprint and source of true random numbers[J]. IEEE Transactions on Computers, 2009, 58(9): 1198-1210. WANG Pengjun, ZHANG Yuejun, HAN Jun, et al. Architecture and physical implementation of reconfigurable multi-port physical unclonable functions in 65 nm CMOS[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(5): 963-970. ZHANG Le, FONG Xuanyao, CHANG Chiphong, et al. Optimizating emerging nonvolatile memories for dual-mode applications: Data storage and key generator[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(7): 1176-1187. ZHANG Le, FONG Xuanyao, CHANG Chiphong, et al. Highly reliable spin-transfer torque magnetic RAM-based physical unclonable function with multi-response-bits per cell [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(8): 1630-1642. ZHANG Jiliang, LIN Yaping, LYU Yongqiang, et al. A PUF-FSM binding scheme for FPGA IP protection and pay- per-device licensing[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(6): 1137-1150. 項(xiàng)群良, 張培勇, 歐陽(yáng)冬生, 等. 多頻率段物理不可克隆函數(shù)[J]. 電子與信息學(xué)報(bào), 2012, 34(8): 2007-2012. doi: 10.3724/ SP.J.1146.2011.01249. XIANG Qunliang, ZHANG Peiyong, OUYANG Dongsheng, et al. Multiple frequency slots based physical unclonable functions[J]. Journal of Electronics Information Technology, 2012, 34 (8): 2007-2012. doi: 10.3724/SP.J.1146.2011.01249. BHARGAVE M and MAI K. An efficient reliable PUF-based cryptographic key generator in 65 nm CMOS[C]. Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany, 2014: 1-6. GAO Yansong, RANASINGHE D C, AL-SARAWI S F, et al. Memristive crypto primitive for building highly secure physical unclonable functions[J]. Scientific Reports, 2015, 5(12785): 1-14. RUHRMAIR U, SOLTER J, SEHNKE F, et al. PUF modeling attacks on simulated and silicon data[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1876-1891. SAHOO D P, NGUYEN P H, MUKHOPADHYAY D, et al. A case of lightweight PUF constructions: cryptanalysis and machine learning attacks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(8): 1334-1343. WAN Meilin, HE Zhangqing, HAN Shuang, et al. An invasive-attack-resistant PUF based on switched-capacitor circuit[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(8): 2024-2034. UNGER S H. Hazards, critical races, and metastability[J]. IEEE Transactions on Computers, 1995, 44(6): 754-768. THEODORIDIS G, THEODORIDIS S, SOUDRIS D, et al. Switching activity estimation under real-gate delay using timed Boolean functions[J]. IEE Proceedings-Computers and Digital Techniques, 2000, 147(6): 444-450. -
計(jì)量
- 文章訪問(wèn)數(shù): 1486
- HTML全文瀏覽量: 202
- PDF下載量: 432
- 被引次數(shù): 0