稀疏信道下基于稀疏貝葉斯學(xué)習(xí)的精簡星座盲均衡算法
doi: 10.11999/JEIT151307 cstr: 32379.14.JEIT151307
基金項目:
國家自然科學(xué)基金(61201380, 61501517)
Reduced Constellation Equalization Algorithm for Sparse Multipath Channels Based on Sparse Bayesian Learning
Funds:
The National Natual Science Foundation of China (61201380, 61501517)
-
摘要: 針對稀疏信道的盲均衡問題,在精簡星座均衡算法框架下建立線性模型,利用稀疏信道下均衡器固有的稀疏特性,引入具有稀疏促進(jìn)作用的先驗分布對均衡器系數(shù)加以約束,使用稀疏貝葉斯學(xué)習(xí)方法迭代求解均衡器系數(shù)得到最大后驗估計值。該文提出的均衡方法屬于數(shù)據(jù)復(fù)用類均衡算法的范疇,能夠適用于數(shù)據(jù)較短的應(yīng)用場合。與隨機梯度方法相比,算法性能受均衡器長度影響較小,收斂后誤符號率性能更好,仿真實驗驗證了算法的有效性。
-
關(guān)鍵詞:
- 數(shù)字通信 /
- 盲均衡 /
- 稀疏信道 /
- 精簡星座算法 /
- 稀疏貝葉斯學(xué)習(xí)
Abstract: This paper deals with blind equalization of sparse multipath channels. A linear model is built under the framework of Reduced Constellation Algorithm (RCA). And the inherent sparse nature of the equalizer is exploited by employing a sparse promoting prior distribution. Then, the sparse Bayesian learning iterative inference method is applied to the proposed model in order to obtain the optimal sparse equalizer. The new proposed algorithm, which belongs to data recycling equalization algorithm domain, can be applied to short packet data applications. Compared with traditional Stochastic Gradient Descent (SGD) method, the new proposed algorithm performs more steadily under different equalizer order and has superior steady-state Symbol-Error-Rate (SER) performance. The effectiveness of the proposed algorithm is verified by simulations. -
阮秀凱, 蔣嘯, 劉莉, 等. 一族新的 Bussgang 類指數(shù)拓展多模盲均衡算法[J]. 電子與信息學(xué)報, 2013, 35(9): 2188-2193. doi: 10.3724/SP.J.1146.2012.01544. RUAN Xiukai, JIANG Xiao, LIU Li, et al. A novel Bussgang category of blind equalization with exponential expanded multi-modulus algorithm[J]. Journal of Electronics Information Technology, 2013, 35(9): 2188-2193. doi: 10.3724/SP.J.1146.2012.01544. YANG J, WERNER J J, and DUMONT G A. The multimodulus blind equalization and its generalized algorithms[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(5): 997-1015. HAN H D and DING Z. Steepest descent algorithm implementation for multichannel blind signal recovery[J]. IET Communications, 2012, 6(18): 3196-3203. ZHOU F, TAN J, FAN X, et al. A novel method for sparse channel estimation using super-resolution dictionary[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 1-11. SENOL H. Joint channel estimation and symbol detection for OFDM systems in rapidly time-varying sparse multipath channels[J]. Wireless Personal Communications, 2015, 82(3): 1161-1178. GELLER B, CAPELLANO V, BROSSIER J M, et al. Equalizer for video rate transmission in multipath underwater communications: Special issue on acoustic communications[J]. IEEE Journal of Oceanic Engineering, 1996, 21(2): 150-155. BERBERDIS K and RONTOGIANNIS A A. Efficient decision feedback equalizer for sparse multipath channels[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, 2000: 2725-2728. LEE F K H and MCLANE P J. Design of nonuniformly- spaced tapped-delay-line equalizers for sparse multipath channels[C]. Global Telecommunications Conference, Mumbai, India, 2001, 2: 1336-1343. VLACHOS E, LALOS A S, and BERBERIDIS K. Stochastic gradient pursuit for adaptive equalization of sparse multipath channels[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 413-423. HELMY A, HEDAYAT A, and AL-DHAHIR N. Robust weighted sum-rate maximization for the multi-stream MIMO interference channel with sparse equalization[J]. IEEE Transactions on Communications, 2015, 60(10): 3645-3659. SILVA L and GOMES J. Sparse channel estimation and equalization for underwater filtered multitone[C]. OCEANS 2015, Genova, Italy, 2015: 1-8. TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211-244. HANSEN T L, BADIU M, FLEURY B H, et al. A sparse Bayesian learning algorithm with dictionary parameter estimation[C]. Sensor Array and Multichannel Signal Processing Workshop, A Corua, Spain, 2014: 385-388. GODARD D N. Method and device for training an adaptive equalizer by means of an unknown data signal in a transmission system using double sideband-quadrature carrier modulation [P]. U.S. Patent 4, 309, 770. 1982. WIPF D P. Sparse estimation with structured dictionaries[C]. Advances in Neural Information Processing Systems, Granada, Spain, 2011: 2016-2024. KAY S. M. (美), 羅鵬飛, 張文明, 等譯. 統(tǒng)計信號處理基礎(chǔ): 估計與檢測理論[M]. 北京,電子工業(yè)出版社, 2003: 277-334. GOMAA A and AL-DHAHIR N. Sparse FIR equalization: a new design framework[C]. Vehicular Technology Conference, Budapest, Hungary, 2011: 1-5. -
計量
- 文章訪問數(shù): 1500
- HTML全文瀏覽量: 172
- PDF下載量: 368
- 被引次數(shù): 0