放大轉發(fā)中繼網絡中綠色的物理層安全通信技術
doi: 10.11999/JEIT150695 cstr: 32379.14.JEIT150695
-
2.
(電子信息系統(tǒng)復雜電磁環(huán)境效應國家重點實驗室 洛陽 471003) ②(清華大學電子工程系 北京 100084) ③(新星技術研究所 合肥 230031)
基金項目:
CEMEE國家重點實驗室開放課題基金(CEMEE2015 K0204B)
Green Communications Based on Physical-layer Security for Amplify-and-forward Relay Networks
-
2.
(State Key Laboratory of Complex Electromagnetic Environmental Effects on Electronics and Information System, Luoyang 471003, China)
Funds:
The Open Project Foundation of CEMEE State Key Laboratory (CEMEE2015K0204B)
-
摘要: 該文基于物理層安全理論,針對能量受限的無線中繼網絡提出一種綠色的保密通信方案。該方案在節(jié)點功率約束和系統(tǒng)最小目標保密速率要求下,通過最優(yōu)功率控制實現系統(tǒng)的安全能效最大化,并基于分式規(guī)劃、對偶分解和DC(Difference of Convex functions)規(guī)劃理論提出了一種迭代的功率分配算法。通過仿真比較,能效優(yōu)化可以顯著提升系統(tǒng)的安全能效,然而相對于保密速率最大化會有一定保密速率損失,這是由于能效和保密之間存在固有的折中。但是,能效優(yōu)化的保密速率仍然大于發(fā)送總功率最小化的保密速率。
-
關鍵詞:
- 信息安全 /
- 能量效率 /
- 物理層安全 /
- 功率分配 /
- 放大轉發(fā)中繼
Abstract: In this paper, a green communication scheme based on physical layer security is addressed considering the energy and secrecy constraints. This scheme maximizes the secure Energy Efficiency (EE) of the network by power allocation subject to the maximum power constraint of each node and the target secrecy rate constraint of the network. Furthermore, an iterative algorithm for power allocation is developed based on fractional programming, dual decomposition, and Difference of Convex functions (DC) programming. It is verified by simulations that the proposed algorithm can lead to a significant gain of secure EE yet with some loss of secrecy rate compared with secrecy rate maximization. This is because that there is an inherent tradeoff between EE and secrecy. However, the achievable secrecy rate of the proposed scheme is still superior over that of total transmission power minimization. -
黃開枝, 洪穎, 羅文宇, 等. 基于演化博弈機制的物理層安全協作方法[J]. 電子與信息學報, 2015, 37(1): 193-199. doi: 10.11999/JEIT140309. HUANG Kaizhi, HONG Ying, LUO Wenyu, et al. A method for physical layer security cooperation based on evolutionary game[J]. Journal of Electronics Information Technology, 2015, 37(1): 193-199. doi: 10.11999/JEIT140309. LIU J, DAI H, and CHEN W. Delay optimal scheduling for energy harvesting based communications[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(3): 452-466. doi: 10.1109/JSAC.2015.2391972. CHEN W, DAI L, LETAIEF K B, et al. A unified cross-layer framework for resource allocation in cooperative networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(8): 3000-3012. doi: 10.1109/TWC. 2008.060831. 黃高勇, 方旭明, 陳煜. 基于速率約束的OFDM中繼鏈路能效最優(yōu)資源分配策略[J]. 電子與信息學報, 2014, 36(9): 2104-2110. doi: 10.3724/SP.J.1146.2013.01661. HUANG Gaoyong, FANG Xuming, and CHEN Yu. Resource allocation for energy efficiency maximization based on rate constrains in OFDM DF relay link[J]. Journal of Electronics Information Technology, 2014, 36(9): 2104-2110. doi: 10.3724/SP.J.1146.2013.01661. LI J, PETROPULU A P, and WEBER S. On cooperative relaying schemes for wireless physical layer security[J]. IEEE Transaction on Signal Processing, 2011, 59(10): 4985-4996. doi: 10.1109/TSP.2011.2159598. DEHGHAN M, GOECKEL D L, GHADERI M, et al. Energy efficiency of cooperative jamming strategies in secure wireless networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(9): 3025-3029. doi: 10.1109/ TWC.2012.070912.110789. EL-HALABI M, LIU T, and GEORGHIADES C N. Secrecy capacity per unit cost[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1909-1920. doi: 10.1109/ JSAC.2013.130922. NG D W K, LO E S, and SCHOBER R. Energy-efficient resource allocation for secure OFDMA systems[J]. IEEE Transactions on Vehicular Technology, 2012, 61(6): 2572-2585. doi: 10.1109/TVT.2012.2199145. COMANICIU C, POOR H V, and ZHANG R. An information theoretic framework for energy efficient secrecy [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, British Columbia, Canada, 2013: 2906-2910. CHEN W. CAO-SIR: Channel aware ordered successive relaying[J]. IEEE Transactions on Wireless Communications, 2014, 13(12): 6513-6527. doi: 10.1109/TWC.2014.2363453. LIU J, CHEN W, ZHANG Y, et al. A utility maximization framework for fair and efficient multicasting in multicarrier wireless cellular networks[J]. IEEE/ACM Transactions on Networking, 2013, 21(1): 110-120. doi: 10.1109/TNET. 2012.2192747. EKREM E and ULUKUS S. Capacity-equivocation region of the Gaussian MIMO wiretap channel[J]. IEEE Transactions on Information Theory, 2012, 58(9): 5699-5710. doi: 10.1109/ TIT.2012.2204534. KHODAKARAMI H and LAHOUTI F. Link adaptation with untrusted relay assignment: design and performance analysis[J]. IEEE Transactions on Communications, 2013, 61(12): 4874-4883. doi: 10.1109/TCOMM.2013.111513. 120888. LIU J, CHEN W, CAO Z, et al. Cooperative beamforming for cognitive radio networks: A cross-layer design[J]. IEEE Transactions on Communications, 2012, 60(5): 1420-1431. doi: 10.1109/TCOMM.2012.031712.100284A. CHEN W, LETAIEF K B, and CAO Z. Buffer-aware network coding for wireless networks[J]. IEEE/ACM Transactions on Networking, 2012, 20(5): 1389-1401. doi: 10.1109/TNET. 2011.2176958. LIU J, CHEN W, CAO Z, et al. Delay optimal scheduling for cognitive radios with cooperative beamforming: A structured matrix-geometric method[J]. IEEE Transactions on Mobile Computing, 2012, 11(8): 1412-1423. doi: 10.1109/TMC. 2011.153. DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492-498. PALOMAR D P and CHIANG M. A tutorial on decomposition methods for network utility maximization[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1439-1451. doi: 10.1109/JSAC.2006.879350. AN L T H and TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133(1/4): 23-46. NGO D T, KHAKUREL S, and LE-NGOC T. Joint subchannel assignment and power allocation for OFDMA femtocell networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 342-355. doi: 10.1109/TWC. 2013.111313.130645. RICHTER S, JONES C, and MORARI M. Computational complexity certification for real-time MPC with input constraints based on the fast gradient method[J]. IEEE Transactions on Automatic Control, 2012, 57(6): 1391-1403. doi: 10.1109/TAC.2011.2176389. -
計量
- 文章訪問數: 1555
- HTML全文瀏覽量: 129
- PDF下載量: 696
- 被引次數: 0