一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

具有隱私保護(hù)功能的知識遷移聚類算法

陳愛國 王士同

陳愛國, 王士同. 具有隱私保護(hù)功能的知識遷移聚類算法[J]. 電子與信息學(xué)報, 2016, 38(3): 523-531. doi: 10.11999/JEIT150645
引用本文: 陳愛國, 王士同. 具有隱私保護(hù)功能的知識遷移聚類算法[J]. 電子與信息學(xué)報, 2016, 38(3): 523-531. doi: 10.11999/JEIT150645
CHEN Aiguo, WANG Shitong. Knowledge Transfer Clustering Algorithm with Privacy Protection[J]. Journal of Electronics & Information Technology, 2016, 38(3): 523-531. doi: 10.11999/JEIT150645
Citation: CHEN Aiguo, WANG Shitong. Knowledge Transfer Clustering Algorithm with Privacy Protection[J]. Journal of Electronics & Information Technology, 2016, 38(3): 523-531. doi: 10.11999/JEIT150645

具有隱私保護(hù)功能的知識遷移聚類算法

doi: 10.11999/JEIT150645 cstr: 32379.14.JEIT150645
基金項目: 

國家自然科學(xué)基金(61272210),江蘇省杰出青年基金(BK20140001),江蘇省自然科學(xué)基金(BK20130155)

Knowledge Transfer Clustering Algorithm with Privacy Protection

Funds: 

The National Natural Science Foundation of China (61272210), Jiangsu Province Outstanding Youth Fund (BK20140001), Natural Science Foundation of Jiangsu Province (BK20130155)

  • 摘要: 傳統(tǒng)聚類算法在數(shù)據(jù)量不足或數(shù)據(jù)被污染的場景下聚類效果較差,針對此問題,在經(jīng)典模糊C均值(FCM)技術(shù)的基礎(chǔ)上,該文提出融合歷史類中心和歷史隸屬度兩類知識遷移機(jī)制的聚類算法。該算法通過有效利用歷史數(shù)據(jù)中總結(jié)得到的輔助知識來指導(dǎo)當(dāng)前由于數(shù)據(jù)不足或數(shù)據(jù)污染帶來的聚類困難問題,從而提高聚類效果。同時,由于該算法僅利用歷史數(shù)據(jù)的類中心和隸屬度,對歷史數(shù)據(jù)具有隱私保護(hù)的優(yōu)點。通過在模擬數(shù)據(jù)集和真實數(shù)據(jù)集上的仿真實驗,證明了該算法的有效性。
  • FERRARI D G and CASTRO L N. Clustering algorithm selection by meta-learning systems: A new distance-based problem characterization and ranking combination methods [J]. Information Sciences, 2015, 301(1): 181-194. doi: 10.1016/j.ins.2014.12.044.
    TZORTZIS G and LIKAS A. The minmax k-means clustering algorithm[J]. Pattern Recognition, 2014, 47(7): 2505-2516. doi: 10.1016/j.patcog.2014.01.015.
    孫吉貴, 劉杰, 趙連宇. 聚類算法研究[J]. 軟件學(xué)報, 2008, 19(1): 48-61. doi: 10.3724/SP.J.1001.2008.00048.
    SUN J G, LIU J, and ZHAO L Y. Clustering algorithms research[J]. Journal of Software, 2008, 19(1): 48-61. doi: 10.3724/SP.J.1001.2008.00048.
    鄧趙紅, 張江濱, 蔣亦樟, 等. 基于模糊子空間聚類的0階L2型TSK模糊系統(tǒng)[J]. 電子與信息學(xué)報, 2015, 37(9): 2082-2088. doi: 10.11999/JEIT150074.
    DENG Z H, ZHANG J B, JIANG Y Z, et al. Fuzzy subspace clustering based zero-order L2-norm TSK fuzzy system[J]. Journal of Electronics Information Technology, 2015, 37(9): 2082-2088. doi: 10.11999/JEIT150074.
    POPAT S K and EMMANUEL M. Review and comparative study of clustering techniques[J]. International Journal of Computer Science and Information Technologies, 2014, 5(1): 805-812.
    BOUGUETTAYA A, YU Q, LIU X, et al. Efficient agglomerative hierarchical clustering[J]. Expert Systems with Applications, 2015, 42(5): 2785-2797. doi: 10.1016/j.eswa. 2014.09.054.
    ZHU L, CHUNG F L, and WANG S T. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions[J]. IEEE Transactions on System, Man and Cybernetics, 2009, 39(3): 578-591. doi: 10.1109/TSMCB. 2008.2004818.
    DUNN J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973, 3(3): 32-57. doi: 10.1080/ 01969727308546046.
    BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York, Plenum Press, 1981: 43-93.
    趙鳳, 劉漢強(qiáng), 范九倫. 基于互補(bǔ)空間信息的多目標(biāo)進(jìn)化聚類圖像分割[J]. 電子與信息學(xué)報, 2015, 37(3): 672-678. doi: 10.11999/JEIT140371.
    ZHAO F, LIU H Q, and FAN J L. Multi-objective evolutionary clustering with complementary spatial information for image segmentation[J]. Journal of Electronics Information Technology, 2015, 37(3): 672-678. doi: 10.11999/JEIT140371.
    趙雪梅, 李玉, 趙泉華. 結(jié)合高斯回歸模型和隱馬爾可夫隨機(jī)場的模糊聚類圖像分割[J]. 電子與信息學(xué)報, 2014, 26(11): 2730-2736. doi: 10.3724/SP.J.1146.2013.01751.
    ZHAO X M, LI Y, and ZHAO Q H. Image segmentation by fuzzy clustering algorithm combining hidden Markov random field and Gaussian regression model[J]. Journal of Electronics Information Technology, 2014, 26(11): 2730-2736. doi: 10.3724/SP.J.1146.2013.01751.
    KIM Y H, SHIM K, KIM M S, et al. DBCURE-MR: An efficient density-based clustering algorithm for large data using MapReduce[J]. Information Systems, 2014, 42(1): 15-35. doi: 10.1016/j.is.2013.11.002.
    AGRAWAL A S and BOJEWWAR S. Comparative study of various clustering techniques[J]. International Journal of Computer Science and Mobile Computing, 2014, 3(10): 497-504.
    SHAO L, ZHU F, and LI X. Transfer learning for visual categorization: a survey[J]. Neural Networks and Learning, 2014, 26(5): 1019-1034. doi: 10.1109/TNNLS.2014.2330900.
    LU J, BEHBOOD V, HAO P, et al. Transfer learning using computational intelligence: A survey[J]. Knowledge-based Systems, 2015, 80(1): 14-23. doi: 10.1016/j.knosys.2015. 01.010.
    LONG M S, WANG J M, DING G G, et al. Transfer learning with graph co-regularization[J]. Knowledge and Data Engineering, 2014, 26(7): 1805-1818. doi: 10.1109/TKDE. 2013.97.
    DAI W Y, XUE G R, YANG Q, et al. Co-clustering based classification for out-of-domain document[C]. The 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2007: 210-219. doi: 10.1145/1281192.1281218.
    GU Q and ZHOU J. Learning the shared subspace for multi- task clustering and transductive transfer classification[C]. The 2009 Ninth IEEE International Conference on Data Mining, IEEE, Washington DC, USA, 2009: 159-168. doi: 10.1109/ICDM.2009.32.
    YANG Q, CHEN Y Q, XUE G R, et al. Heterogeneous transfer learning for image clustering via the social web[C]. Proceeding of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, Suntec, Singapore, 2009: 1-9.
    XUE G R, DAI W Y, YANG Q, et al. Topic-bridged PLSA for cross-domain text classification[C]. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, ACM, 2008: 627-634. doi: 10.1145/1390334. 1390441.
    MOHAMMAD K S and SHAMS N. Analysis of KDD CUP 99 dataset using clustering based data mining[J]. International Journal of Database Theory and Application, 2013, 6(5): 23-34.
    GU Q and ZHOU J. Co-clustering on manifolds[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2009: 359-368. doi: 10.1145/1557019.1557063.
    DAI W Y, YANG Q, XUE G R, et al. Self-taught clustering [C]. Proceeding of the 25th International Conference on Machine Learning, ACM, New York, NY, USA, 2008: 200-207. doi: 10.1145/1390156.1390182.
    JING L, NG K M, and HUANG Z. An entropy weighting K-means algorithm for subspace clustering of high- dimensional sparse data[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1026-1041. doi: 10.1109/ TKDE.2007.1048.
    LIU J, MOHAMMED J, CARTER J, et al. Distance-based clustering of CGH data[J]. Bioinformatics, 2006, 22(16): 1971-1978. doi: 10.1093/bioinformatics/btl185.
  • 加載中
計量
  • 文章訪問數(shù):  1325
  • HTML全文瀏覽量:  140
  • PDF下載量:  651
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-06-01
  • 修回日期:  2015-11-02
  • 刊出日期:  2016-03-19

目錄

    /

    返回文章
    返回