一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于空譜聯(lián)合的多假設(shè)預(yù)測高光譜圖像壓縮感知重構(gòu)算法

王麗 馮燕

王麗, 馮燕. 基于空譜聯(lián)合的多假設(shè)預(yù)測高光譜圖像壓縮感知重構(gòu)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480
引用本文: 王麗, 馮燕. 基于空譜聯(lián)合的多假設(shè)預(yù)測高光譜圖像壓縮感知重構(gòu)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480
Wang Li, Feng Yan. Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction[J]. Journal of Electronics & Information Technology, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480
Citation: Wang Li, Feng Yan. Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction[J]. Journal of Electronics & Information Technology, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480

基于空譜聯(lián)合的多假設(shè)預(yù)測高光譜圖像壓縮感知重構(gòu)算法

doi: 10.11999/JEIT150480 cstr: 32379.14.JEIT150480
基金項(xiàng)目: 

國家自然科學(xué)基金(61071171)和西北工業(yè)大學(xué)博士論文創(chuàng)新基金(CX201424)

Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction

Funds: 

The National Natural Science Foundation of China (61071171)

  • 摘要: 為充分利用高光譜圖像的空間相關(guān)性和譜間相關(guān)性,該文提出一種基于空譜聯(lián)合的多假設(shè)預(yù)測壓縮感知重構(gòu)算法。將高光譜圖像分組為參考波段圖像和非參考波段圖像,參考波段圖像利用光滑Landweber投影算法重構(gòu),對于非參考波段圖像,引入空譜聯(lián)合的多假設(shè)預(yù)測模型,提高重構(gòu)精度。非參考波段圖像中每個(gè)圖像塊的預(yù)測值不僅來自非參考波段圖像未經(jīng)預(yù)測的初始重構(gòu)值的相鄰圖像塊,而且來自參考波段重構(gòu)圖像相應(yīng)位置及其鄰近的圖像塊,利用預(yù)測值得到測量域中的殘差,然后對殘差進(jìn)行重構(gòu)并對預(yù)測值進(jìn)行修正,此殘差比原圖像更稀疏,且算法采用迭代方式提高重構(gòu)圖像的精度。借助Tikhonov正則化方法求解多假設(shè)預(yù)測的權(quán)重系數(shù),并基于結(jié)構(gòu)相似性判斷是否改變多假設(shè)預(yù)測搜索窗口大小,最后利用交叉驗(yàn)證計(jì)算重構(gòu)算法終止迭代的判據(jù)參數(shù)。實(shí)驗(yàn)結(jié)果表明,所提算法優(yōu)于僅利用空間相關(guān)性或譜間相關(guān)性進(jìn)行預(yù)測和不預(yù)測的重構(gòu)算法,其重構(gòu)圖像的峰值信噪比提高2 dB以上。
  • Heras D B, Argello F, and Quesada-Barriuso P. Exploring ELM-based spatialspectral classification of hyperspectral images[J]. International Journal of Remote Sensing, 2014, 35(2): 401-423.
    Zhao C, Li X, Ren J, et al.. Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery[J]. International Journal of Remote Sensing, 2013, 34(24): 8669-8684.
    Tan C, Samanta A, Jin X, et al.. Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies[J]. International Journal of Remote Sensing, 2013, 34(24): 8789-8802.
    Xie X, Li Y, Li R, et al.. Hyperspectral characteristics and growth monitoring of rice (Oryza sativa) under asymmetric warming[J]. International Journal of Remote Sensing, 2013, 34(23): 8449-8462.
    Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    Provost J and Lesage F. The application of compressed sensing for photo-acoustic tomography[J]. IEEE Transactions on Medical Imaging, 2009, 28(4): 585-594.
    Riccardo M, Giorao Q, Michele R, et al.. A Bayesian analysis of compressive sensing data recovery in wireless sensor networks[C]. International Conference on Ultra Modern Telecommunications&Workshops, St. Petersburg, 2009: 1-6.
    Shu X and Ahuja N. Imaging via three-dimensional compressive sampling[C]. Paper presented at the International Conference on Computer Vision (ICCV), Barcelona, ES, 2011: 439-446.
    沈志博, 董春曦, 黃龍, 等. 基于壓縮感知的寬頻段二維DOA估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2014, 36(12): 2935-2941.
    Shen Zhi-bo, Dong Chun-xi, Huang Long, et al.. Broadband 2-D DOA estimation based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(12): 2935-2941.
    王軍, 閆鋒剛, 馬文潔, 等. 基于Laplace先驗(yàn)的Bayes壓縮感知波達(dá)方向估計(jì)[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 817-823.
    Wang Jun, Yan Feng-gang, Ma Wen-jie, et al.. Direction-of-arrival estimation using Laplace prior based on bayes compressive sensing[J]. Journal of Electronics Information Technology, 2015, 37(4): 817-823.
    Yin J, Sun J, and Jia X. Sparse analysis based on generalized Gaussian model for spectrum recovery with compressed sensing theory[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2752-2759.
    Cands E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
    Figueiredo M, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598.
    Baron S, Sarvoham R, and Baraniuk R G. Bayesian compressive sensing via belief propagation[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 269?280.
    Mallat S G and Zhang Z. Matching pursuits with time- frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    Fowler J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230-2242.
    Gan L. Block Compressed sensing of natural images[C]. 15th International Conference on Digital Signal Processing, Cardiff, Wales, UK, 2007: 403-406.
    Ji S, Dunson D, and Carin L. Multitask compressive sensing[J]. IEEE Transaction on Signal Processing, 2009, 57(1): 92-106.
    Claudia V C, Henry A, and Gonzalo R A. Fast lapped block reconstructions in compressive spectral imaging[J]. Applied Optics, 2013, 52(10): D32-45.
    Henry A, Hoover R, Wu Y, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12-21.
    劉海英, 吳成柯, 呂沛, 等. 基于譜間預(yù)測和聯(lián)合優(yōu)化的高光譜壓縮感知圖像重構(gòu)[J]. 電子與信息學(xué)報(bào), 2011, 33(9): 2248-2252.
    Liu Hai-ying, Wu Cheng-ke, L Pei, et al.. Compressed hyperspectral image sensing reconstruction based on interband prediction and joint optimization[J]. Journal of Electronics Information Technology, 2011, 33(9): 2248-2252.
    劉海英, 李云松, 吳成柯, 等. 一種高重構(gòu)質(zhì)量低復(fù)雜度的高光譜圖像壓縮感知[J]. 西安電子科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 38(3): 37-41.
    Liu Hai-ying, Li Yun-song, Wu Cheng-ke, et al.. Compressed hyperspectral image sensing based on interband prediction[J]. Journal of Xidian University (Natural Science), 2011, 38(3): 37-41.
    Mun S and Fowler J E. Residual reconstruction for blocked-based compressed sensing of video[C]. Paper presented at the Data Compression Conference (DCC), Snowbird, UT, 2011: 183-192.
    李然, 干宗良, 崔子冠, 等. 聯(lián)合時(shí)空特征的視頻分塊壓縮感知重構(gòu)[J]. 電子與信息學(xué)報(bào), 2014, 36(2): 285-292.
    Li Ran, Gan Zong-liang, Cui Zi-guan, et al.. Block compressed sensing reconstruction of video combined with temporal-spatial characteristics[J]. Journal of Electronics Information Technology, 2014, 36(2): 285-292.
    賈應(yīng)彪, 馮燕, 袁曉玲, 等. 高光譜圖像分塊壓縮感知采樣及譜間預(yù)測重構(gòu)[J]. 應(yīng)用科學(xué)學(xué)報(bào), 2014, 32(3): 281-286.
    Jia Ying-biao, Feng Yan, Yuan Xiao-ling, et al.. Block compressed sensing sampling and reconstruction using spectral prediction for hyperspectral images[J]. Journal of Applied Science, 2014, 32(3): 281-286.
    Chen C, Tramel E W, and Fowler J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]. Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2011: 1193-1198.
    Chen C, Li W, Tramel E W, et al.. Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 365-374.
    Fowler J E, Mun S, and Tramel E W. Block-based compressed sensing of images and video[J]. Foundations and Trends in Signal Processing, 2012, 4(4): 297-416.
    Mun S and Fowler J E. Block compressed sensing of images using directional transforms[C]. Paper presented at the International Conference on Image Processing (ICIP), Cairo, EG, 2009: 3021-3024.
    Johnson W B and Lindenstrauss J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathematics, 1984, 26(1): 189-206.
    Tikhonov A N and Arsenin V Y. Solutions of Ill-posed Problems[M]. Washington, DC, USA: V. H. Winston Sons, 1977: 45-87.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1247
  • HTML全文瀏覽量:  104
  • PDF下載量:  537
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-08-21
  • 刊出日期:  2015-12-19

目錄

    /

    返回文章
    返回