一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

可遷移測度準(zhǔn)則下的協(xié)變量偏移修正多源集成方法

楊興明 吳克偉 孫永宣 謝昭

楊興明, 吳克偉, 孫永宣, 謝昭. 可遷移測度準(zhǔn)則下的協(xié)變量偏移修正多源集成方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323
引用本文: 楊興明, 吳克偉, 孫永宣, 謝昭. 可遷移測度準(zhǔn)則下的協(xié)變量偏移修正多源集成方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323
Yang Xing-ming, Wu Ke-wei, Sun Yong-xuan, Xie Zhao. Modified Covariate-shift Multi-source Ensemble Method in Transferability Metric[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323
Citation: Yang Xing-ming, Wu Ke-wei, Sun Yong-xuan, Xie Zhao. Modified Covariate-shift Multi-source Ensemble Method in Transferability Metric[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323

可遷移測度準(zhǔn)則下的協(xié)變量偏移修正多源集成方法

doi: 10.11999/JEIT150323 cstr: 32379.14.JEIT150323
基金項(xiàng)目: 

國家自然科學(xué)基金(60905005, 61273237)

Modified Covariate-shift Multi-source Ensemble Method in Transferability Metric

Funds: 

The National Natural Science Foundation of China (60905005, 61273237)

  • 摘要: 遷移學(xué)習(xí)通過充分利用源域共享知識(shí),實(shí)現(xiàn)對目標(biāo)域的小樣本問題求解,然而,對訓(xùn)練和測試樣本分布差異測度仍然是該領(lǐng)域的主要挑戰(zhàn)。該文針對多源遷移學(xué)習(xí)算法中,由于源域選擇和源域輔助樣本選擇不當(dāng)引起的負(fù)遷移問題進(jìn)行研究,提出一種可遷移測度準(zhǔn)則下的協(xié)變量偏移修正多源集成方法。首先,根據(jù)源域和目標(biāo)域之間的協(xié)變量偏移原則,利用聯(lián)合概率的密度估計(jì),定義輔助樣本的可遷移測度,驗(yàn)證目標(biāo)域和源域在數(shù)據(jù)空間中標(biāo)記分布的一致性。其次,在多源域選擇階段,引入非遷移判別過程,提高了源域知識(shí)的遷移準(zhǔn)確性。最后,在Caltech 256數(shù)據(jù)集中,驗(yàn)證了Gist特征知識(shí)表示和遷移的有效性,分析了多種條件下的輔助樣本選擇和源域選擇的有效性。實(shí)驗(yàn)結(jié)果表明所提算法可有效降低負(fù)遷移現(xiàn)象的發(fā)生,獲得更好的遷移學(xué)習(xí)性能
  • Tommasi T, OrabonaF, and Caputo B. Learning categories from few examples with multi model knowledge transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 928941.
    Yao Y and Doretto G. Boosting for transfer learning with multiple sources[C]. Proceedings of Computer Vision and Pattern Recognition, San Francisco, 2010: 18551862.
    Long M S, Wang J M, Ding G G, et al.. Adaptation regularization a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 10761089.
    Lin D, An X, and Zhang J. Double-bootstrapping source data selection for instance-based transfer learning[J]. Pattern Recognition Letters, 2013, 34(11): 12791285.
    Kuzborskij I, Orabona F, and Caputo B. From N to N+1: multiclass transfer incremental learning[C]. Proceedings of Computer Vision and Pattern Recognition, Portland, 2013: 33583365.
    Zhu Y, Chen Y Q, Lu Z Q, et al.. Heterogeneous transfer learning for image classification[C]. Proceedings of AAAI Conference on Artificial Intelligence, San Francisco, 2011: 13041309.
    張倩, 李明, 王雪松, 等. 一種面向多源領(lǐng)域的實(shí)例遷移學(xué)習(xí)[J]. 自動(dòng)化學(xué)報(bào), 2014, 40(6): 1176-1183.
    Zhang Qian, Li Ming, Wang Xue-song, et al.. Instance-based transfer learning for multi-source domains[J]. Acta Automatica Sinica, 2014, 40(6): 11761183.
    Pang J, Huang Q, Yan S, et al.. Transferring boosted detectors towards viewpoint and scene adaptiveness[J]. IEEE Transactions on Image Processing, 2011, 20(5): 13881400.
    Li G, Qin L, Huang Q, et al.. Treat samples differently: object tracking with semi-supervised online CovBoost[C]. Proceedings of International Conference on Computer Vision, Barcelona, 2011: 627634.
    Qi G J, Aggarwal C, Rui Y, et al.. Towards cross-category knowledge propagation for learning visual concepts[C]. Proceedings of Computer Vision and Pattern Recognition, Colorado Springs, 2011: 897904.
    Chu W S, Torre F D, and CohnJ F. Selective transfer machine for personalized facial action unit detection[C]. Proceedings of Computer Vision and Pattern Recognition, Portland, 2013: 35153522.
    Yang S Z, Hou C P, Zhang C S, et al.. Robust non-negative matrix factorization via joint sparse and graph regularization for transfer learning[J]. Neural Computing and Applications, 2013, 23(2): 541559.
    方耀寧, 郭云飛, 丁雪濤, 等. 一種基于標(biāo)簽遷移學(xué)習(xí)的改進(jìn)正則化奇異值分解推薦算法[J]. 電子與信息學(xué)報(bào), 2013, 35(12): 30463050.
    Fang Yao-ning, Guo Yun-fei, Ding Xue-tao, et al.. An improved regularized singular value decomposition recommender algorithm based on tag transfer learning[J]. Journal of Electronics Information Technology, 2013, 35(12): 30463050.
    Gopalan R. Learning cross-domain information transfer for location recognition and clustering[C]. Proceedings of Computer Vision and Pattern Recognition, Portland, 2013: 731738.
    Luo Y, Liu T L, Tao D C, et al.. Decomposition-based transfer distance metric learning for image classification[J]. IEEE Transactions on Image Processing, 2014, 23(9): 37893801.
    Long M S, Wang J M, Ding G G, et al.. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 18051818.
    洪佳明, 印鑒, 黃云, 等. TrSVM: 一種基于領(lǐng)域相似性的遷移學(xué)習(xí)算法[J]. 計(jì)算機(jī)研究與發(fā)展, 2011, 48(10): 18231830.
    Hong Jia-ming, Yin Jian, Huang Yun, et al.. TrSVM: a transfer learning algorithm using domain similarity[J]. Journal of Computer Research and Development, 2011, 48(10): 18231830.
    Seah C W, Tsang I W, and Ong Y S. Transfer ordinal label learning[J]. IEEE Transactions on Neural Networkand Learning System, 2013, 24(11): 18631876.
    許敏, 王士同, 史熒中. 一種新的面向遷移學(xué)習(xí)的L2核分類器[J]. 電子與信息學(xué)報(bào), 2013, 35(9): 2059-2065.
    Xu Min, Wang Shi-tong, and Shi Ying-zhong. A novel transfer-learning-oriented L2 kernel classifier[J]. Journal of Electronics Information Technology, 2013, 35(9): 20592065.
    Long M S, Wang J M, Ding G G, et al.. Transfer feature learning with joint distribution adaptation[C]. Proceedings of International Conference on Computer Vision, Sydney, 2013: 22002207.
    Patricia N and Caputo B. Learning to learn, from transfer learning to domain adaptation: a unifying perspective[C]. Proceedings of Computer Vision and Pattern Recognition, Columbus, 2014: 14421449.
    Zhang B, Wang Y, Wang Y, et al.. Stable learning in coding space for multi-class decoding and its extension for multi-class hypothesis transfer learning[C]. Proceedings of Computer Vision and Pattern Recognition, Columbus, 2014: 10751081.
    Gretton A, Smola A, Huang J, et al.. Covariate Shift by Kernel Mean Matching[M]. Cambridge: MIT Press, 2009: 131160.
    Huang P P, Wang G, and Qin S Y. Boosting for transfer learning from multiple data sources[J]. Pattern Recognition Letters, 2012, 33(5): 568579.
    Nie Q F, Jin L Z, and Fei S M. Probability estimation for multi-class classification using AdaBoost[J]. Pattern Recognition, 2014, 47(12): 39313940.
    Sugiyama M, Krauledat M, and Mller K R. Covariate shift adaptation by importance weighted cross validation[J]. The Journal of Machine Learning Research, 2007, 8(1): 9851005.
    Choi M J, Lim J J, Torralba A, et al.. Exploiting hierarchical context on a large database of object categories[C]. IEEE Conference on Computer Vision Pattern Recognition, San Frencisco, CA, 2010: 129136.
    Han Y and Liu G. Biologically inspired task oriented gist model for scene classification[J]. Computer Vision and Image Understanding, 2013, 117(1): 7695.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1386
  • HTML全文瀏覽量:  185
  • PDF下載量:  673
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-03-17
  • 修回日期:  2015-08-13
  • 刊出日期:  2015-12-19

目錄

    /

    返回文章
    返回