基于同質(zhì)像素預選擇的極化SAR圖像非局部均值濾波
doi: 10.11999/JEIT150314 cstr: 32379.14.JEIT150314
-
2.
(合肥工業(yè)大學計算機與信息學院 合肥 230009) ②(光電控制技術(shù)重點實驗室 洛陽 471009)
國家自然科學基金(61371154, 41076120, 61271381, 61102154),光電控制技術(shù)重點實驗室和航空科學基金聯(lián)合資助項目(201301P4007)和中央高校基本科研業(yè)務(wù)費專項(2012HGCX0001)
Polarimetric SAR Image Despeckling Using Non Local Means Filter Based on Homogeneous Pixels Preselection
-
2.
(School of Computer and Information, Hefei University of Technology, Hefei 230009, China)
The National Natural Science Foundation of China (61371154, 41076120, 61271381, 61102154)
-
摘要: 該文針對在極化合成孔徑雷達(PolSAR)圖像相干斑抑制過程中結(jié)構(gòu)特征和極化散射特性保持的難題,提出一種基于同質(zhì)像素預選擇的非局部均值濾波算法(NLM-HPP)。該算法結(jié)合像素統(tǒng)計特性和極化散射機制選擇濾波同質(zhì)像素,并引入結(jié)構(gòu)損失函數(shù)提高非局部均值(NLM)算法中像素間相似性度量的準確性,最后用改進的相似性度量對同質(zhì)像素的協(xié)方差矩陣進行加權(quán)平均,實現(xiàn)對PolSAR圖像的相干斑抑制。對真實PolSAR數(shù)據(jù)進行的實驗結(jié)果表明,與現(xiàn)有的Refined Lee濾波、基于散射模型的濾波方法和兩種非局部均值濾波相比,此方法在有效濾除相干斑點的同時能更好地保持PolSAR圖像的結(jié)構(gòu)信息和極化信息。
-
關(guān)鍵詞:
- 極化合成孔徑雷達 /
- 非局部均值 /
- 結(jié)構(gòu)保持 /
- 極化信息 /
- 同質(zhì)像素預選擇
Abstract: A Non Local Means (NLM) filtering based on Homogeneous Pixels Preselection (NLM-HPP) is proposed to solve the problem of preserving structural feature and polarimetric scattering properties in speckle reduction of Polarimetric SAR (PolSAR) images. Firstly, this method combines statistical property and polarimetric scattering mechanism to select homogeneous pixels in the filtering process. Secondly, the loss function of structure is introduced to improve the accuracy of similarity measure between pixels in NLM method. Finally, it averages the covariance matrices of homogeneous pixels with the weights according to the refined similarity measure, inducing efficient reduction of the speckle in PolSAR images. The implementation results on real PolSAR images, compared with the Refined Lee filter, Scattering-Model-Based speckle filter and two kinds of Non Local Means filter, demonstrate that the proposed method can reduce speckle effectively, and further retain structural information and polarimetric information in PolSAR images. -
Alonso-Gonzlez A, Lpez-Martnez C, and Salembier P. Filtering and segmentation of polarimetric SAR data based on binary partition trees[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 593-605. 周曉光, 匡綱要, 萬建偉. 多極化SAR圖像斑點抑制綜述[J]. 中國圖象圖形學報, 2008, 13(3): 377-385. Zhou Xiao-guang, Kuang Gang-yao, and Wan Jian-wei. A review of polarimetric SAR speckle reduction[J]. Journal of Image and Graphics, 2008, 13(3): 377-385. Lee J S, Grunes M R, Schuler D L, et al.. Scattering- model-based speckle filtering of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 176-187. Lee J S, Grunes M R, and De Grandi G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2363-2373. Deledalle C A, Denis L, and Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661-2672. Liu G and Zhong H. Nonlocal means filter for polarimetric SAR data despeckling based on discriminative similarity measure[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 514-518. Chen J, Chen Y, An W, et al.. Nonlocal filtering for polarimetric SAR data: A pretest approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1744-1754. Lee J S, Ainsworth T L, Wang Y, et al.. Polarimetric SAR speckle filtering and the extended sigma filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1150-1160. 易子麟, 尹東, 胡安洲, 等. 基于非局部均值濾波的SAR圖像去噪[J]. 電子與信息學報,2012, 34(4): 950-955. Yi Z L, Yin D, Hu A Z, et al.. SAR image despeckling based on non-local means filter[J]. Journal of Electronics and Information Technology, 2012, 34(4): 950-955. Buades A, Coll B, and Morel J M. A non-local algorithm for image denoising[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005, 2: 60-65. 鐘瑩, 楊學志, 唐益明, 等. 采用結(jié)構(gòu)自適應(yīng)塊匹配的非局部均值去噪算法[J]. 電子與信息學報, 2013, 35(12): 2908-2915. Zhong Y, Yang X Z, Tang Y M, et al.. Non-local means denoising derived from structure-adapted block matching[J]. Journal of Electronics Information Technology, 2013, 35(12): 2908-2915. Torres L, Sant'Anna S J S, da Costa Freitas C, et al.. Speckle reduction in polarimetric SAR imagery with stochastic distances and nonlocal means[J]. Pattern Recognition, 2014, 47(1): 141-157. Zhong H, Zhang J, and Liu G. Robust polarimetric SAR despeckling based on nonlocal means and distributed Lee filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4198-4210. Deledalle C A, Tupin F, and Denis L. Polarimetric SAR estimation based on non-local means[C]. IEEE International on Geoscience and Remote Sensing Symposium, Hawaii, USA, 2010: 2515-2518. D'Hondt O, Guillaso S, and Hellwich O. Iterative bilateral filtering of polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1628-1639. Deledalle C A, Denis L, Poggi G, et al.. Exploiting patch similarity for SAR image processing: the nonlocal paradigm [J]. IEEE Signal Processing Magazine, 2014, 31(4): 69-78. Lee J S, Wen J H, Ainsworth T L, et al.. Improved sigma filter for speckle filtering of SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 691-707. Dellepiane S G and Angiati E. Quality assessment of despeckled SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(2): 691-70. Hebar M, Gleich D, and Cucej Z. Autobinomial model for SAR image despeckling and information extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2818-2835. Ding Z, Zeng T, Dong F, et al.. An improved PolSAR image speckle reduction algorithm based on structural judgment and hybrid four-component polarimetric decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4438-4449. Feng H, Hou B, and Gong M. SAR image despeckling based on local homogeneous-region segmentation by using pixel-relativity measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2724-2737. Lee J S, Grunes M R, Pottier E, et al.. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731. -
計量
- 文章訪問數(shù): 1275
- HTML全文瀏覽量: 160
- PDF下載量: 363
- 被引次數(shù): 0