一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于自適應卡爾曼濾波的側(cè)滑移動機器人運動模型估計

吳耀 王田苗 王曉剛 劉淼

吳耀, 王田苗, 王曉剛, 劉淼. 基于自適應卡爾曼濾波的側(cè)滑移動機器人運動模型估計[J]. 電子與信息學報, 2015, 37(12): 3016-3024. doi: 10.11999/JEIT150289
引用本文: 吳耀, 王田苗, 王曉剛, 劉淼. 基于自適應卡爾曼濾波的側(cè)滑移動機器人運動模型估計[J]. 電子與信息學報, 2015, 37(12): 3016-3024. doi: 10.11999/JEIT150289
Wu Yao, Wang Tian-miao, Wang Xiao-gang, Liu Miao. Kinematics Model Prediction of Skid-steering Robot Using Adaptive Kalman Filter Estimation[J]. Journal of Electronics & Information Technology, 2015, 37(12): 3016-3024. doi: 10.11999/JEIT150289
Citation: Wu Yao, Wang Tian-miao, Wang Xiao-gang, Liu Miao. Kinematics Model Prediction of Skid-steering Robot Using Adaptive Kalman Filter Estimation[J]. Journal of Electronics & Information Technology, 2015, 37(12): 3016-3024. doi: 10.11999/JEIT150289

基于自適應卡爾曼濾波的側(cè)滑移動機器人運動模型估計

doi: 10.11999/JEIT150289 cstr: 32379.14.JEIT150289
基金項目: 

國家863計劃(2011AA040202)

Kinematics Model Prediction of Skid-steering Robot Using Adaptive Kalman Filter Estimation

Funds: 

The National 863 Program of China (2011AA 040202)

  • 摘要: 精確實時在線的運動模型對于側(cè)滑移動機器人的運動控制和軌跡規(guī)劃至關重要,相比于離線模型估計,該文在基于速度瞬心(ICRs)的側(cè)滑移動機器人運動學模型基礎上,采用擴展卡爾曼濾波(EKF),在同一特定地形下在線準確得到ICRs的參數(shù)值;并針對不同的地形情況,采用k-近鄰法對地形進行分類,實時判別機器人當前運行的路面,采用自適應的卡爾曼濾波器(AKF)調(diào)整濾波器參數(shù)。仿真和實驗對比表明,該方法在同一地形和變化地形下均能快速估計出側(cè)滑移動機器人的運動學模型,收斂時間均為3 s以內(nèi),可以滿足實際使用的需要。
  • Kozlowski K and Pazderski D. Modeling and control of a 4-wheel skid-steering mobile robot[J]. International Journal of Applied Mathematics and Computer Science, 2004, 12(4): 477-496.
    Yu W, Chuy O, Collins E G, et al.. Dynamic modeling of a skid-steered wheeled vehicle with experimental verification[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 2009: 4211-4219.
    Yu W, Chuy O, Collins E G, et al.. Analysis and experimental verification for dynamic modeling of a skid-steered wheeled vehicle[J]. IEEE Transactions on Robotics, 2010, 26(2): 340-353.
    Yi J, Zhang J, Song D, et al.. IMU-based localization and slip estimation for skid-steered mobile robots[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 2007: 2845-2850.
    Wong J and Chiang C. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(3): 343-355.
    Le A, Rye D, and Durrant-Whyte H. Estimation of track-soil interactions for autonomous tracked vehicles[C]. IEEE International Conference on Robotics Automation, Albuquerque, NM, USA, 1997: 1388-1393.
    Ani O A, Xu He, Xue Kai, et al.. Analytical modeling and multi?objective optimization (MOO) of slippage for wheeled mobile robot (WMR) in rough terrain[J]. Journal of Central South University, 2012, 19(9): 2458-2467.
    Ani O A, Xu He, Shen Yi-ping, et al.. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain[J]. Journal of Zhejiang University, 2013, 14(1): 11-29.
    趙磊, 王鴻鵬, 董良, 等. 一種基于動力學模型的高速輪式移動機器人漂移運動控制方法[J]. 機器人, 2014, 36(2): 137-146.
    Zhao Lei, Wang Hong-peng, Dong Liang, et al.. A drift control method for high-speed wheeled mobile robot based on dynamic model[J]. ROBOT, 2014, 36(2): 137-146.
    Zhang Yu, Hu Ji-bin, Li Xue-yuan, et al.. A linear lateral dynamic model of skid steered wheeled vehicle[C]. IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, 2013: 964-969.
    Ni Jun and Hu Ji-bin. The research of steady-state and transient-state response of skid steering wheeled vehicle[C]. IEEE Transportation Electrification Conference Expo, Beijing, China, 2014: 1-6.
    Wu Yao, Wang Tian-miao, Liang Jian-hong, et al.. Experimental kinematics modeling estimation for wheeled skid-steering mobile robots[C]. IEEE International Conference on Robotics and Biomimetics, Shenzhen, China, 2014: 268-273.
    Rogers-Marcovitz F, George M, Seegmiller N, et al.. Aiding off-road inertial navigation with high performance models of wheel slip[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012: 215-222.
    Moosavian S A A and Kalantari A. Experimental slip estimation for exact kinematics modeling and control of a tracked mobile robot[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008: 95-100.
    Martnez J, Mandow A, Morales J, et al.. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10): 867-878.
    楊云, 王鴻鵬, 劉景泰, 等. 四輪獨立驅(qū)動式移動機器人的運動學分析與仿真[C]. 第30屆中國控制會議, 煙臺, 2011: 3958-3963.
    Yang Yun, Wang Hong-peng, Liu Jing-tai, et al.. The kinematic analysis and simulation for four-wheel independent drive mobile robot[C]. Proceedings of the 30th Chinese Control Conference, Yantai, China, 2011: 3958-3963.
    Pentzer J, Brennan S, and Reichard K. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3): 455-476.
    蔣恩松, 李孟超, 孫劉杰. 一種基于神經(jīng)網(wǎng)絡的卡爾曼濾波改進方法[J]. 電子與信息學報, 2007, 29(9): 2073-2076.
    Jiang En-song, Li Meng-chao, and Sun Liu-jie. An improved method of kalman filter based on neural network[J]. Journal of Electronics Information Technology, 2007, 29(9): 2073-2076.
    徐定杰, 沈忱, 沈鋒. 時變有色觀測噪聲下基于變分貝葉斯學習的自適應卡爾曼濾波[J]. 電子與信息學報, 2013, 35(7): 1593-1598.
    Xu Ding-jie, Shen Chen, and Shen Feng. Adaptive kalman filtering with time-varying colored measurement noise by variational bayesian learning [J]. Journal of Electronics Information Technology, 2013, 35(7): 1593-1598.
    李強. 基于振動信號的輪式移動機器人地面分類方法研究[D]. [博士論文], 哈爾濱工程大學, 2013.
    Li Qiang. Research on terrain classification methods for wheeled robots based on vibration signals[D]. [Ph.D. dissertation], Harbin Engineering University, 2013.
    Reinstein M, Kubelka V, and Zimmermann K. Terrain adaptive odometry for mobile skid-steer robots[C]. IEEE International Conference on Robotics Automation, Karlsruhe, Germany, 2013: 4691-4696.
    Weiss C, Fechner N, Stark M, et al.. Comparison of different approaches to vibration-based terrain classification[C]. The European Conference on Mobile Robots, Freiburg, Germany, 2007.
    Tick D, Rahman T, Busso C, et al.. Indoor robotic terrain classification via angular velocity based hierarchical classifier selection[C]. IEEE International Conference on Robotics Automation, River Centre, Saint Paul, Minnesota, USA, 2012: 3594-3600.
    Dorf R C and Bishop R H. Modern Control System[M]. 12th Edition. Upper Saddle River, NJ, US, Prentice Hall, Inc., 2010: 234-235.
  • 加載中
計量
  • 文章訪問數(shù):  1801
  • HTML全文瀏覽量:  222
  • PDF下載量:  772
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-03-09
  • 修回日期:  2015-09-09
  • 刊出日期:  2015-12-19

目錄

    /

    返回文章
    返回