基于自適應卡爾曼濾波的側(cè)滑移動機器人運動模型估計
doi: 10.11999/JEIT150289 cstr: 32379.14.JEIT150289
基金項目:
國家863計劃(2011AA040202)
Kinematics Model Prediction of Skid-steering Robot Using Adaptive Kalman Filter Estimation
Funds:
The National 863 Program of China (2011AA 040202)
-
摘要: 精確實時在線的運動模型對于側(cè)滑移動機器人的運動控制和軌跡規(guī)劃至關重要,相比于離線模型估計,該文在基于速度瞬心(ICRs)的側(cè)滑移動機器人運動學模型基礎上,采用擴展卡爾曼濾波(EKF),在同一特定地形下在線準確得到ICRs的參數(shù)值;并針對不同的地形情況,采用k-近鄰法對地形進行分類,實時判別機器人當前運行的路面,采用自適應的卡爾曼濾波器(AKF)調(diào)整濾波器參數(shù)。仿真和實驗對比表明,該方法在同一地形和變化地形下均能快速估計出側(cè)滑移動機器人的運動學模型,收斂時間均為3 s以內(nèi),可以滿足實際使用的需要。Abstract: Exact and real-time kinematics model plays a very important role in the mobile robot motion control and path planning. Compared to the off-line model estimation, based on an Instantaneous Centers of Rotation (ICRs) based kinematic model of skid-steering, an Extend Kalman Filter (EKF) method is used to estimate ICRs values on specific terrain on line. Terrains are identified by introducing k-Nearest Neighbors (kNN) algorithm when the robot moves on different terrains. Based on terrain classification, an Adaptive Kalman Filter (AKF) is used to adjust the filter parameters. The simulation and experiment results show that this method can converge very fast and estimate the ICRs value accurately with 3 seconds.
-
Kozlowski K and Pazderski D. Modeling and control of a 4-wheel skid-steering mobile robot[J]. International Journal of Applied Mathematics and Computer Science, 2004, 12(4): 477-496. Yu W, Chuy O, Collins E G, et al.. Dynamic modeling of a skid-steered wheeled vehicle with experimental verification[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 2009: 4211-4219. Yu W, Chuy O, Collins E G, et al.. Analysis and experimental verification for dynamic modeling of a skid-steered wheeled vehicle[J]. IEEE Transactions on Robotics, 2010, 26(2): 340-353. Yi J, Zhang J, Song D, et al.. IMU-based localization and slip estimation for skid-steered mobile robots[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 2007: 2845-2850. Wong J and Chiang C. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(3): 343-355. Le A, Rye D, and Durrant-Whyte H. Estimation of track-soil interactions for autonomous tracked vehicles[C]. IEEE International Conference on Robotics Automation, Albuquerque, NM, USA, 1997: 1388-1393. Ani O A, Xu He, Xue Kai, et al.. Analytical modeling and multi?objective optimization (MOO) of slippage for wheeled mobile robot (WMR) in rough terrain[J]. Journal of Central South University, 2012, 19(9): 2458-2467. Ani O A, Xu He, Shen Yi-ping, et al.. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain[J]. Journal of Zhejiang University, 2013, 14(1): 11-29. 趙磊, 王鴻鵬, 董良, 等. 一種基于動力學模型的高速輪式移動機器人漂移運動控制方法[J]. 機器人, 2014, 36(2): 137-146. Zhao Lei, Wang Hong-peng, Dong Liang, et al.. A drift control method for high-speed wheeled mobile robot based on dynamic model[J]. ROBOT, 2014, 36(2): 137-146. Zhang Yu, Hu Ji-bin, Li Xue-yuan, et al.. A linear lateral dynamic model of skid steered wheeled vehicle[C]. IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, 2013: 964-969. Ni Jun and Hu Ji-bin. The research of steady-state and transient-state response of skid steering wheeled vehicle[C]. IEEE Transportation Electrification Conference Expo, Beijing, China, 2014: 1-6. Wu Yao, Wang Tian-miao, Liang Jian-hong, et al.. Experimental kinematics modeling estimation for wheeled skid-steering mobile robots[C]. IEEE International Conference on Robotics and Biomimetics, Shenzhen, China, 2014: 268-273. Rogers-Marcovitz F, George M, Seegmiller N, et al.. Aiding off-road inertial navigation with high performance models of wheel slip[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012: 215-222. Moosavian S A A and Kalantari A. Experimental slip estimation for exact kinematics modeling and control of a tracked mobile robot[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008: 95-100. Martnez J, Mandow A, Morales J, et al.. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10): 867-878. 楊云, 王鴻鵬, 劉景泰, 等. 四輪獨立驅(qū)動式移動機器人的運動學分析與仿真[C]. 第30屆中國控制會議, 煙臺, 2011: 3958-3963. Yang Yun, Wang Hong-peng, Liu Jing-tai, et al.. The kinematic analysis and simulation for four-wheel independent drive mobile robot[C]. Proceedings of the 30th Chinese Control Conference, Yantai, China, 2011: 3958-3963. Pentzer J, Brennan S, and Reichard K. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3): 455-476. 蔣恩松, 李孟超, 孫劉杰. 一種基于神經(jīng)網(wǎng)絡的卡爾曼濾波改進方法[J]. 電子與信息學報, 2007, 29(9): 2073-2076. Jiang En-song, Li Meng-chao, and Sun Liu-jie. An improved method of kalman filter based on neural network[J]. Journal of Electronics Information Technology, 2007, 29(9): 2073-2076. 徐定杰, 沈忱, 沈鋒. 時變有色觀測噪聲下基于變分貝葉斯學習的自適應卡爾曼濾波[J]. 電子與信息學報, 2013, 35(7): 1593-1598. Xu Ding-jie, Shen Chen, and Shen Feng. Adaptive kalman filtering with time-varying colored measurement noise by variational bayesian learning [J]. Journal of Electronics Information Technology, 2013, 35(7): 1593-1598. 李強. 基于振動信號的輪式移動機器人地面分類方法研究[D]. [博士論文], 哈爾濱工程大學, 2013. Li Qiang. Research on terrain classification methods for wheeled robots based on vibration signals[D]. [Ph.D. dissertation], Harbin Engineering University, 2013. Reinstein M, Kubelka V, and Zimmermann K. Terrain adaptive odometry for mobile skid-steer robots[C]. IEEE International Conference on Robotics Automation, Karlsruhe, Germany, 2013: 4691-4696. Weiss C, Fechner N, Stark M, et al.. Comparison of different approaches to vibration-based terrain classification[C]. The European Conference on Mobile Robots, Freiburg, Germany, 2007. Tick D, Rahman T, Busso C, et al.. Indoor robotic terrain classification via angular velocity based hierarchical classifier selection[C]. IEEE International Conference on Robotics Automation, River Centre, Saint Paul, Minnesota, USA, 2012: 3594-3600. Dorf R C and Bishop R H. Modern Control System[M]. 12th Edition. Upper Saddle River, NJ, US, Prentice Hall, Inc., 2010: 234-235. -
計量
- 文章訪問數(shù): 1801
- HTML全文瀏覽量: 222
- PDF下載量: 772
- 被引次數(shù): 0