基于貝葉斯壓縮感知的ISAR自聚焦成像
doi: 10.11999/JEIT150235 cstr: 32379.14.JEIT150235
-
2.
(中國科學(xué)技術(shù)大學(xué)電磁空間信息重點實驗室 合肥 230027) ②(中國衛(wèi)星海上測控部 江陰 214431)
國家自然科學(xué)基金(61172155, 61401140)和國家863計劃項目(2013AA122903)
An Autofocus Imaging Method for ISAR Based on Bayesian Compressive Sensing
-
2.
(Key Laboratory of Electromagnetic Space Information, University of Science and Technology of China, Hefei 230027, China)
The National Natural Science Foundation of China (61172155, 61401140)
-
摘要: 針對ISAR自聚焦成像,該文提出一種基于貝葉斯壓縮感知的高分辨率成像算法。首先利用目標(biāo)圖像的稀疏特性構(gòu)建級聯(lián)形式的稀疏先驗?zāi)P?,同時將相位誤差建模為均勻分布模型;然后基于最大后驗準(zhǔn)則,依據(jù)貝葉斯壓縮感知理論交替迭代求解目標(biāo)圖像和相位誤差。與傳統(tǒng)稀疏方法相比,所提算法進(jìn)一步利用了目標(biāo)圖像的聯(lián)合稀疏信息,將ISAR CS成像轉(zhuǎn)化為MMV聯(lián)合稀疏優(yōu)化問題的求解,可以有效改善自聚焦的精度以及成像質(zhì)量。仿真結(jié)果驗證了該算法的有效性。
-
關(guān)鍵詞:
- 逆合成孔徑雷達(dá) /
- 自聚焦技術(shù) /
- 高分辨成像 /
- 貝葉斯壓縮感知
Abstract: For Inverse Synthetic Aperture Radar (ISAR) autofocus imaging, this paper proposes a high-resolution imaging method based on Bayesian Compressed Sensing (BCS). Firstly, according to the sparsity characteristics of target image, a sparse model with the hierarchical framework is established, which can achieve better approximation to the original l0 norm. Then, the phase errors are assumed to obey the uniform distribution. Next, following the criterion of Maximum A Posteriori (MAP), target image and phase errors are solved using alternate iteration based on BCS theory. Compared with traditional methods, the proposed method further combines the joint sparse information of target image, and converts the ISAR CS imaging into solving a joint Multiple Measurement Vector (MMV) sparse optimization problem, which can improve both the autofocus precision and the imaging quality efficiently. Simulation results show the effectiveness of the proposed method. -
Brisken S and Martella M. Multistatic ISAR autofocus with an image entropy-based technique[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 30-36. L Jie-qin, Huang Lei, Shi Yun-mei, et al.. Inverse synthetic aperture radar imaging via modified smoothed l0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1235-1238. 吳敏, 邢孟道, 張磊. 基于壓縮感知的二維聯(lián)合超分辨 ISAR 成像算法[J]. 電子與信息學(xué)報, 2014, 36(1): 187-193. Wu Ming, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193. Odendaal J W, Barnard E, and Pistorius C W I. Two- dimensional superresolution radar imaging using the MUSIC algorithm[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(10): 1386-1391. Zhang Lei, Xing Meng-dao, Qiu Cheng-wei, et al.. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 567-571. Rao Wei, Li Gang, Wang Xi-qin, et al.. Adaptive sparse recovery by parametric weighted l1 minimization for ISAR imaging of uniformly rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 942-952. 成萍, 司錫才, 姜義成, 等. 基于稀疏貝葉斯學(xué)習(xí)的稀疏信號表示 ISAR 成像方法[J]. 電子學(xué)報, 2008, 36(3): 547-550. Cheng Ping, Si Xi-cai, Jiang Yi-cheng, et al.. Sparse signal representation ISAR imaging method based on sparse Bayesian learning[J]. Acta Electronica Sinica, 2008, 36(3): 547-550. Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013. Onhon N O and Cetin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075-2088. 徐剛, 包敏, 李亞超, 等. 基于貝葉斯估計的高精度ISAR成像[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(11): 2382-2388. Xu Gang, Bao Min, Li Ya-chao, et al.. High precision ISAR imaging via Bayesian statistics[J]. Systems Engineering and Electronics, 2011, 33(11): 2382-2388. Wahl D E, Eichel P H, Ghiglia D C, et al.. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835. Li Xi, Liu Guo-sui, and Ni Jin-lin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240-1252. Tzagkarakis G, Achim A, Tsakalides P, et al.. Joint reconstruction of compressively sensed ultrasound RF echoes by exploiting temporal correlations[C]. Proceedings of the IEEE 10th International Symposium on Biomedical Imaging, San Francisco, 2013: 632-635. Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001(1): 211-244. Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63. Du Xiao-yong, Duan Chong-wen, and Hu Wei-dong. Sparse representation based autofocusing technique for ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1826-1835. Chen C C and Andrews H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2-14. Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013. -
計量
- 文章訪問數(shù): 1616
- HTML全文瀏覽量: 143
- PDF下載量: 664
- 被引次數(shù): 0