一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于貝葉斯壓縮感知的ISAR自聚焦成像

王天云 陸新飛 孫麟 陳暢 陳衛(wèi)東

王天云, 陸新飛, 孫麟, 陳暢, 陳衛(wèi)東. 基于貝葉斯壓縮感知的ISAR自聚焦成像[J]. 電子與信息學(xué)報, 2015, 37(11): 2719-2726. doi: 10.11999/JEIT150235
引用本文: 王天云, 陸新飛, 孫麟, 陳暢, 陳衛(wèi)東. 基于貝葉斯壓縮感知的ISAR自聚焦成像[J]. 電子與信息學(xué)報, 2015, 37(11): 2719-2726. doi: 10.11999/JEIT150235
Wang Tian-yun, Lu Xin-fei, Sun Lin, Chen Chang, Chen Wei-dong. An Autofocus Imaging Method for ISAR Based on Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2719-2726. doi: 10.11999/JEIT150235
Citation: Wang Tian-yun, Lu Xin-fei, Sun Lin, Chen Chang, Chen Wei-dong. An Autofocus Imaging Method for ISAR Based on Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2719-2726. doi: 10.11999/JEIT150235

基于貝葉斯壓縮感知的ISAR自聚焦成像

doi: 10.11999/JEIT150235 cstr: 32379.14.JEIT150235
基金項目: 

國家自然科學(xué)基金(61172155, 61401140)和國家863計劃項目(2013AA122903)

An Autofocus Imaging Method for ISAR Based on Bayesian Compressive Sensing

Funds: 

The National Natural Science Foundation of China (61172155, 61401140)

  • 摘要: 針對ISAR自聚焦成像,該文提出一種基于貝葉斯壓縮感知的高分辨率成像算法。首先利用目標(biāo)圖像的稀疏特性構(gòu)建級聯(lián)形式的稀疏先驗?zāi)P?,同時將相位誤差建模為均勻分布模型;然后基于最大后驗準(zhǔn)則,依據(jù)貝葉斯壓縮感知理論交替迭代求解目標(biāo)圖像和相位誤差。與傳統(tǒng)稀疏方法相比,所提算法進(jìn)一步利用了目標(biāo)圖像的聯(lián)合稀疏信息,將ISAR CS成像轉(zhuǎn)化為MMV聯(lián)合稀疏優(yōu)化問題的求解,可以有效改善自聚焦的精度以及成像質(zhì)量。仿真結(jié)果驗證了該算法的有效性。
  • Brisken S and Martella M. Multistatic ISAR autofocus with an image entropy-based technique[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 30-36.
    L Jie-qin, Huang Lei, Shi Yun-mei, et al.. Inverse synthetic aperture radar imaging via modified smoothed l0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1235-1238.
    吳敏, 邢孟道, 張磊. 基于壓縮感知的二維聯(lián)合超分辨 ISAR 成像算法[J]. 電子與信息學(xué)報, 2014, 36(1): 187-193.
    Wu Ming, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
    Odendaal J W, Barnard E, and Pistorius C W I. Two- dimensional superresolution radar imaging using the MUSIC algorithm[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(10): 1386-1391.
    Zhang Lei, Xing Meng-dao, Qiu Cheng-wei, et al.. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 567-571.
    Rao Wei, Li Gang, Wang Xi-qin, et al.. Adaptive sparse recovery by parametric weighted l1 minimization for ISAR imaging of uniformly rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 942-952.
    成萍, 司錫才, 姜義成, 等. 基于稀疏貝葉斯學(xué)習(xí)的稀疏信號表示 ISAR 成像方法[J]. 電子學(xué)報, 2008, 36(3): 547-550.
    Cheng Ping, Si Xi-cai, Jiang Yi-cheng, et al.. Sparse signal representation ISAR imaging method based on sparse Bayesian learning[J]. Acta Electronica Sinica, 2008, 36(3): 547-550.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013.
    Onhon N O and Cetin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075-2088.
    徐剛, 包敏, 李亞超, 等. 基于貝葉斯估計的高精度ISAR成像[J]. 系統(tǒng)工程與電子技術(shù), 2011, 33(11): 2382-2388.
    Xu Gang, Bao Min, Li Ya-chao, et al.. High precision ISAR imaging via Bayesian statistics[J]. Systems Engineering and Electronics, 2011, 33(11): 2382-2388.
    Wahl D E, Eichel P H, Ghiglia D C, et al.. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835.
    Li Xi, Liu Guo-sui, and Ni Jin-lin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240-1252.
    Tzagkarakis G, Achim A, Tsakalides P, et al.. Joint reconstruction of compressively sensed ultrasound RF echoes by exploiting temporal correlations[C]. Proceedings of the IEEE 10th International Symposium on Biomedical Imaging, San Francisco, 2013: 632-635.
    Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001(1): 211-244.
    Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63.
    Du Xiao-yong, Duan Chong-wen, and Hu Wei-dong. Sparse representation based autofocusing technique for ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1826-1835.
    Chen C C and Andrews H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2-14.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013.
  • 加載中
計量
  • 文章訪問數(shù):  1616
  • HTML全文瀏覽量:  143
  • PDF下載量:  664
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-02-11
  • 修回日期:  2015-06-29
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回