一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種基于嵌入技術(shù)的異構(gòu)信息網(wǎng)絡(luò)的快速聚類算法

陳麗敏 楊靜 張健沛

陳麗敏, 楊靜, 張健沛. 一種基于嵌入技術(shù)的異構(gòu)信息網(wǎng)絡(luò)的快速聚類算法[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106
引用本文: 陳麗敏, 楊靜, 張健沛. 一種基于嵌入技術(shù)的異構(gòu)信息網(wǎng)絡(luò)的快速聚類算法[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106
Chen Li-min, Yang Jing, Zhang Jian-pei. A Fast Clustering Algorithm Based on Embedding Technology for Heterogeneous Information Networks[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106
Citation: Chen Li-min, Yang Jing, Zhang Jian-pei. A Fast Clustering Algorithm Based on Embedding Technology for Heterogeneous Information Networks[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106

一種基于嵌入技術(shù)的異構(gòu)信息網(wǎng)絡(luò)的快速聚類算法

doi: 10.11999/JEIT150106 cstr: 32379.14.JEIT150106
基金項(xiàng)目: 

國家自然科學(xué)基金(61370083, 61073043, 61073041)和高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20112304110011, 20122304110012)

A Fast Clustering Algorithm Based on Embedding Technology for Heterogeneous Information Networks

Funds: 

The National Natural Science Foundation of China (61370083, 61073043, 61073041)

  • 摘要: 異構(gòu)信息網(wǎng)絡(luò)聚類分析是當(dāng)前的熱點(diǎn)研究問題之一。利用異構(gòu)信息網(wǎng)絡(luò)的稀疏性,該文提出一種基于嵌入技術(shù)的星型模式的異構(gòu)信息網(wǎng)絡(luò)的快速聚類算法。首先從相容的角度將異構(gòu)信息網(wǎng)絡(luò)轉(zhuǎn)化為若干個(gè)相容的二部圖,使用隨機(jī)映射和一種線性時(shí)間求解程序快速計(jì)算出每個(gè)二部圖的近似通勤距離嵌入,每個(gè)嵌入都存在一個(gè)子集指示目標(biāo)數(shù)據(jù)集;然后,使用這些指示子集構(gòu)建一個(gè)通用的聚類模型;最后,將所有指示子集的類設(shè)置標(biāo)號(hào),通過計(jì)算指示同一目標(biāo)對(duì)象的指示數(shù)據(jù)與標(biāo)號(hào)相同類的中心點(diǎn)的加權(quán)距離總和,同時(shí)劃分所有的指示子集,從而快速獲得通用模型的極小值。通過理論分析及實(shí)驗(yàn)驗(yàn)證,該文算法聚類速度快,聚類準(zhǔn)確率高。
  • 肖杰斌, 張紹武.基于隨機(jī)游走和增量相關(guān)節(jié)點(diǎn)的動(dòng)態(tài)網(wǎng)絡(luò)社團(tuán)挖掘算法[J]. 電子與信息學(xué)報(bào). 2013, 35(4): 977-981.
    Xiao Jie-bin and Zhang Shao-wu. An algorithm of integrating random walk and increment correlative vertexes for mining community of dynamic networks[J]. Journal of Electronics Information Technology, 2013, 35(4): 977-981.
    陳季夢, 陳家俊, 劉杰, 等. 基于結(jié)構(gòu)相似度的大規(guī)模社交網(wǎng)絡(luò)聚類算法[J]. 電子與信息學(xué)報(bào). 2015, 37(2): 449-454.
    Chen Ji-meng, Chen Jia-jun, Liu Jie, et al.. Clustering algorithms for large-scale social networks based on structural similarity[J]. Journal of Electronics Information Technology, 2015, 37(2): 449-454.
    Sun Y and Han J. Mining heterogeneous information networks: principles and methodologies[J]. Proceedings of Mining Heterogeneous Information Networks: Principles and Methodologies, 2012, 3(2): 1-159.
    Huang Y and Gao X. Clustering on heterogeneous networks [J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2014, 4(3): 213-233.
    Gao B, Liu T Y, Zheng X, et al.. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering[C]. Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, 2005: 41-50.
    Gao B, Liu T, and Ma W-Y. Star-structured high-order heterogeneous data co-clustering based on consistent information theory[C]. Proceedings of the 6th International Conference on Data Mining (ICDM 2006), Hong Kong, 2006: 880-884.
    Long B, Zhang Z M, Wu X, et al.. Spectral clustering for multi-type relational data[C]. Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, 2006: 585-592.
    Sun Y, Yu Y, and Han J. Ranking-based clustering of heterogeneous information networks with star network schema[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, 2009: 797-806.
    Li P, Wen J, and Li X. SNTClus: a novel service clustering algorithm based on network analysis and service tags[J]. Przeglad Elektrotechniczny, 2013, 89(1): 208-210.
    Li P, Chen L, Li X, et al.. RNRank: Network-Based Ranking on Relational Tuples[M]. Boston: Behavior and Social Computing, Springer International Publishing, 2013: 139-150.
    Wang R, Shi C, Philip S Y, et al.. Integrating Clustering and Ranking on Hybrid Heterogeneous Information Network[M]. Berlin: Advances in Knowledge Discovery and Data Mining, Springer Berlin Heidelberg, 2013: 583-594.
    Boden B, Ester M, and Seidl T. Density-Based Subspace Clustering in Heterogeneous Networks[M]. Berlin: Machine Learning and Knowledge Discovery in Databases, Springer Berlin Heidelberg, 2014: 149-164.
    Meng Q, Tafavogh S, and Kennedy P J. Community detection on heterogeneous networks by multiple semantic- path clustering[C]. 2014 6th IEEE International Conference on Computational Aspects of Social Networks (CASoN), Porto, 2014: 7-12.
    Meng X, Shi C, Li Y, et al.. Relevance Measure in Large-scale Heterogeneous Networks[M]. Boston: Web Technologies and Applications, Springer International Publishing, 2014: 636-643.
    Aggarwal C C, Xie Y, and Philip S Y. On dynamic link inference in heterogeneous networks[C]. SIAM International Conference on Data?Mining, Anaheim, 2012: 415-426.
    Khoa N L D and Chawla S. Large Scale Spectral Clustering Using Resistance Distance and Spielman-teng Solvers[M]. Berlin: Discovery Science, Springer Berlin Heidelberg, 2012: 7-21.
    Spielman D A and Teng S H. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems[C]. Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, 2004: 81-90.
    Spielman D A and Teng S H. Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2014, 35(3): 835-885.
    Fouss F, Pirotte A, Renders J M, et al.. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 355-369.
    Spielman D A and Srivastava N. Graph sparsification by effective resistances[J]. SIAM Journal on Computing, 2011, 40(6): 1913-1926.
    Achlioptas D. Database-friendly random projections[C]. Proceedings of the 20th ACM Sigmod-Sigact-Sigart Symposium on Principles of Database Systems, New York, 2001: 274-281.
    Koutis I, Miller G L, and Tolliver D. Combinatorial preconditioners and multilevel solvers for problems in computer vision and image processing[J]. Computer Vision and Image Understanding, 2011, 115(12): 1638-1646.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1329
  • HTML全文瀏覽量:  133
  • PDF下載量:  596
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-01-21
  • 修回日期:  2015-07-16
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回