未知風(fēng)場(chǎng)擾動(dòng)下無(wú)人機(jī)三維航跡跟蹤魯棒最優(yōu)控制
doi: 10.11999/JEIT150047 cstr: 32379.14.JEIT150047
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(60774064)和教育部博士點(diǎn)基金(20116102110026)
Robust Optimal Control for Unmanned Aerial Vehicles Three-dimensional Trajectory Tracking in Wind Disturbance
Funds:
The National Natural Science Foundation of China (60774064)
-
摘要: 該文提出一種未知風(fēng)場(chǎng)擾動(dòng)下無(wú)人機(jī)精確3維航路跟蹤的魯棒最優(yōu)控制律。該控制律基于跟蹤虛擬目標(biāo)的思想,將風(fēng)場(chǎng)擾動(dòng)加入無(wú)人機(jī)運(yùn)動(dòng)方程,采用反饋線性化將無(wú)人機(jī)的非線性動(dòng)力學(xué)方程變換為線性狀態(tài)方程。假設(shè)風(fēng)場(chǎng)擾動(dòng)已知的條件下,采用線性二次型調(diào)節(jié)器推導(dǎo)出能夠跟蹤3維航路的最優(yōu)控制律。進(jìn)一步考慮未知的風(fēng)場(chǎng)擾動(dòng),設(shè)計(jì)魯棒控制項(xiàng)代替最優(yōu)控制律中的風(fēng)場(chǎng)參數(shù),得到能夠抑制未知有界風(fēng)場(chǎng)干擾的魯棒最優(yōu)控制律,并采用Lyapunov穩(wěn)定性理論證明該閉環(huán)系統(tǒng)的全局漸近穩(wěn)定性。仿真表明該控制律能夠?qū)崿F(xiàn)在未知風(fēng)場(chǎng)擾動(dòng)下無(wú)人機(jī)精確3維航跡跟蹤,且具有良好的跟蹤性能。
-
關(guān)鍵詞:
- 3維航跡跟蹤 /
- 最優(yōu)控制 /
- 魯棒控制 /
- 風(fēng)場(chǎng)擾動(dòng)
Abstract: This paper presents a robust optimal guidance control law for precise three-dimensional (3D) trajectory tracking of an Unmanned Aerial Vehicle (UAV) in wind disturbance. The wind disturbance is considered in the UAVs kinematic model. The reference path is considered as a trajectory of a virtual target. Feedback linearization is used to transform the nonlinear dynamics of the UAV to linear state equations. Based on the assumption that the wind disturbance can be known precisely, an optimal control law is derived for the UAV's 3D trajectory tracking using the LQR (Linear Quadratic Regulator). Then considering the unknown wind disturbance, a robust term is designed to replace the unknown wind disturbance, and a robust optimal control law is obtained. Global asymptotic stability of the closed-loop system is proved by Lyapunov stability theory. Simulations show that the proposed control law can achieve precise 3D UAV trajectory tracking with wind disturbance attenuation, and has good tracking performance.-
Key words:
- 3D trajectory tracking /
- Optimal control /
- Robust control /
- Winds disturbance
-
Cho A, Kim J, Lee S, et al.. Wind estimation and airspeed calibration using a UAV with a single-antenna GPS receiver and pitot tube[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 109-117. Nelson D R, Barber D B, Mclain T W, et al.. Vector field path following for miniature air vehicles[J]. IEEE Transactions on Robotics, 2007, 23(3): 519-529. 雷旭升, 陶冶. 小型無(wú)人飛行器風(fēng)場(chǎng)擾動(dòng)自適應(yīng)控制方法[J]. 航空學(xué)報(bào), 2010, 31(6): 1171-1176. Lei X S and Tao Y. Adaptive control for small unmanned aerial vehicle under wind disturbance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1171-1176. Rysdyk R. Unmanned aerial vehicle path following for target observation in wind[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1092-1100. Ragi S and Edwin C. UAV path planning in a dynamic environment via partially observable markov decision process [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2397-2412. Ailliot P, Monbet V, and Prevosto M. An autoregressive model with time-varying coefficients for wind fields[J]. Environmetrics, 2006, 17(2): 107-117. Langelaan J W, Alley N, and Neidhoefer J. Wind field estimation for small unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1016-1030. De Jong P M A, Laan J J, Veld A C, et al.. Wind-profile estimation using airborne sensors[J]. Journal of Aircraft, 2014, 51(6): 1852-1863. Mcgee T G and Hedrick J K. Path planning and control for multiple point surveillance by an unmanned aircraft in wind[C]. 2006 American Control Conference, Minneapolis, MN, United States, 2006: 4261-4266. Celentano L. Robust tracking method for uncertain MIMO systems of realistic trajectories[J]. Journal of the Franklin Institute, 2013, 350(3): 437-451. Ouyang P R, Acob J, and Pano V. PD with sliding mode control for trajectory tracking of robotic system[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2): 189-200. Sabanovic A. Variable structure systems with sliding modes in motion control-a survey[J]. IEEE Transactions on Industrial Informatics, 2011, 7(2): 212-223. Park S, Deyst J, and How J P. Performance and lyapunov stability of a nonlinear path following guidance method[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1718-1728. Kothari M, Postlethwaite I, and Gu D W. UAV path following in windy urban environments[J]. Journal of Intelligent Robotic Systems, 2014, 74(3-4): 1013-1028. 賀躍幫, 裴海龍, 葉祥, 等. 無(wú)人直升機(jī)的自適應(yīng)動(dòng)態(tài)面軌跡跟蹤控制[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 41(5): 1-8. He Y B, Pei H L, Ye X, et al.. Trajectory tracking control of unmanned helicopters by using adaptivedynamic surface approach[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(5): 1-8. 王懌, 祝小平, 周洲, 等. 3維動(dòng)態(tài)環(huán)境下的無(wú)人機(jī)路徑跟蹤算法[J]. 機(jī)器人, 2014, 36(1): 83-91. Wang Y, Zhu X P, Zhou Z, et al.. UAV path following in 3-D dynamic environment[J]. ROBOT, 2014, 36(1): 83-91. 黃靜, 劉剛, 馬廣富. 含不確定性的繩系衛(wèi)星姿態(tài)的魯棒最優(yōu)控制[J]. 宇航學(xué)報(bào), 2012, 33(10): 1423-1431. Huang J, Liu G, and Ma G F. Nonlinear robust optimal attitude tracking of tethered satellite system with uncertainties[J]. Journal of Astronautics, 2012, 33(10): 1423-1431. 賈鶴鳴, 張利軍, 程相勤, 等. 基于非線性迭代滑模的欠驅(qū)動(dòng)UUV三維航跡跟蹤控制[J]. 自動(dòng)化學(xué)報(bào), 2012, 38(2): 308-314. Jia H M, Zhang L J, Cheng X Q, et al.. Three-dimensional path following control for an underactuated UUV based on nonlinear iterative sliding mode[J]. Acta Automatica Sinica, 2012, 38(2): 308-314. El-Ferik S, Qureshi A, and Lewis F L. Neuro-adaptive cooperative tracking control of unknown higher-order affine nonlinear systems[J]. Automatica, 2014, 50(3): 798-808. Bugajski D J and Enns D F. Nonlinear control law with application to high angle-of-attack flight[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(3): 761-767. 陳曉岑, 周東華, 陳茂銀. 基于逆系統(tǒng)方法的DGMSCMG框架伺服系統(tǒng)解耦控制研究[J]. 自動(dòng)化學(xué)報(bào), 2013, 39(5): 502-509. Chen X C, Zhou D H, and Chen M Y. Decoupling control of the gimbal servo system of the DGMSCMG based on the dynamic inverse system method[J]. Acta Automatica Sinica, 2013, 39(5): 502-509. Snell S A, Nns D F, and Arrard W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 976-984. Khalil H K. Nonlinear Systems[M]. Upper Saddle River: Prentice Hall, 2002: 126-132. Park S. Autonomous aerobatics on commanded path[J]. Aerospace Science and Technology, 2012, 22(1): 64-74. Cabecinhas D, Cunha R, and Silvestre C. A nonlinear quadrotor trajectory tracking controller with disturbance rejection[J]. Control Engineering Practice, 2014, 26: 1-10. -
計(jì)量
- 文章訪問數(shù): 1463
- HTML全文瀏覽量: 149
- PDF下載量: 921
- 被引次數(shù): 0