一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于塊稀疏貝葉斯模型的ISAR成像方法

吳稱光 鄧彬 蘇伍各 王宏強(qiáng) 秦玉亮

吳稱光, 鄧彬, 蘇伍各, 王宏強(qiáng), 秦玉亮. 基于塊稀疏貝葉斯模型的ISAR成像方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
引用本文: 吳稱光, 鄧彬, 蘇伍各, 王宏強(qiáng), 秦玉亮. 基于塊稀疏貝葉斯模型的ISAR成像方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
Wu Cheng-guang, Deng Bin, Su Wu-ge, Wang Hong-qiang, Qin Yu-liang. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
Citation: Wu Cheng-guang, Deng Bin, Su Wu-ge, Wang Hong-qiang, Qin Yu-liang. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624

基于塊稀疏貝葉斯模型的ISAR成像方法

doi: 10.11999/JEIT141624 cstr: 32379.14.JEIT141624
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61171133),國(guó)家自然科學(xué)青年基金(61101182, 61302148)

ISAR Imaging Method Based on the Bayesian Group-sparse Modeling

Funds: 

The National Natural Science Foundation of China (61171133)

  • 摘要: 傳統(tǒng)ISAR稀疏成像主要針對(duì)獨(dú)立散射點(diǎn)散射系數(shù)的重構(gòu)問(wèn)題,然而實(shí)際情況下目標(biāo)散射點(diǎn)之間并不是獨(dú)立存在的,而是以區(qū)域或塊的形式存在,在該情形下利用常用的稀疏重構(gòu)算法并不能完全地刻畫(huà)塊狀目標(biāo)的真實(shí)結(jié)構(gòu),因此該文考慮采用塊稀疏重構(gòu)算法進(jìn)行目標(biāo)散射系數(shù)重建?;趬K稀疏貝葉斯模型和變分推理的重構(gòu)方法(VBGS),包含了稀疏貝葉斯學(xué)習(xí)(SBL)方法中參數(shù)學(xué)習(xí)的優(yōu)點(diǎn),其利用分層的先驗(yàn)分布來(lái)表征未知信號(hào)的稀疏塊狀信息,因而相對(duì)于現(xiàn)有的恢復(fù)算法能夠更好地重建塊稀疏信號(hào)。該方法基于變分貝葉斯推理原理,根據(jù)觀測(cè)量能自動(dòng)地估計(jì)信號(hào)未知參數(shù),而無(wú)需人工參數(shù)設(shè)置。針對(duì)稀疏塊狀目標(biāo),該文結(jié)合壓縮感知(CS)理論將VBGS方法用于ISAR成像,仿真實(shí)驗(yàn)成像結(jié)果表明該方法優(yōu)于傳統(tǒng)的成像結(jié)果,適合于具有塊狀結(jié)構(gòu)的ISAR目標(biāo)成像。
  • Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    Zhang Xiao-hua, Bai Ting, Meng Hong-yun, et al.. Compressive sensing based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990-994.
    Rao Wei, Li Gang, and Wang Xi-qin. Parametric sparse representation method for SAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910-919.
    吳敏, 邢孟道, 張磊. 基于壓縮感知的二維聯(lián)合超分辨 ISAR 成像算法[J]. 電子與信息學(xué)報(bào), 2014, 36(1): 187-193.
    Wu Min, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
    蘇伍各, 王宏強(qiáng), 鄧彬, 等. 基于方差成分?jǐn)U張壓縮的稀疏貝葉斯ISAR成像方法[J]. 電子與信息學(xué)報(bào), 2014, 36(7): 1525-1531.
    Su Wu-ge, Wang Hong-qiang, Deng Bing, et al.. Sparse Bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531.
    Yang Jun-gang, Huang Xiao-tao, Thompson J, et al.. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608-4620.
    Liu Zhen, You Peng, Wei Xi-zhang, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
    Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586597.
    Wipf D P and Rao B. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164.
    Qiu Kun and Aleksandar D. Variance-component based sparse signal reconstruction and model selection[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 2935-2952.
    Eldar Y C and Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302-5316.
    Meier L, Van De Geer S, and Buhlmann P. The group lasso for logistic regression[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70(1): 53-71.
    Stojnic M. L2/L1-optimization in block-sparse compressed sensing and its strong thresholds[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 350-357.
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: Uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 30423054.
    Zhao Li-fan, Wang Lu, Bi Guo-an, et al.. An autofocus technique for high resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392-6403.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Super-resolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013.
    Zhang Zhi-ling and Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015.
    Babacan S D, Nakajima S, and Do M N. Bayesian group sparse modeling and variational inference[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2906-2921.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1506
  • HTML全文瀏覽量:  104
  • PDF下載量:  760
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-12-18
  • 修回日期:  2015-10-19
  • 刊出日期:  2015-12-19

目錄

    /

    返回文章
    返回