一種基于子集約束的協(xié)議首部糾錯(cuò)算法
doi: 10.11999/JEIT141574 cstr: 32379.14.JEIT141574
基金項(xiàng)目:
國(guó)家安全重大基礎(chǔ)研究(6131482013)
Header Recovery Algorithm Based on Subset Constraint
-
摘要: 針對(duì)無(wú)線網(wǎng)絡(luò)數(shù)據(jù)的協(xié)議首部容易出錯(cuò)問題,該文在研究基于循環(huán)冗余校驗(yàn)的協(xié)議首部糾錯(cuò)算法的基礎(chǔ)上,提出一種基于子集約束的糾錯(cuò)算法。該算法利用接收比特的置信度信息以接收向量為中心構(gòu)建約束子集,從而縮小運(yùn)算搜索范圍,克服此前算法運(yùn)算復(fù)雜度高的缺陷。隨后,結(jié)合無(wú)線信號(hào)類型與信道模型,對(duì)算法的測(cè)試長(zhǎng)度參數(shù)的取值范圍進(jìn)行了理論分析和實(shí)驗(yàn)驗(yàn)證。仿真結(jié)果表明,對(duì)于不同信噪比的無(wú)線信號(hào),該算法可通過改變測(cè)試長(zhǎng)度來(lái)調(diào)節(jié)約束子集大小,實(shí)現(xiàn)在保證較好性能條件下有效地降低運(yùn)算開銷,具有較強(qiáng)的實(shí)際應(yīng)用價(jià)值。
-
關(guān)鍵詞:
- 無(wú)線通信 /
- 無(wú)線多媒體 /
- 協(xié)議首部糾錯(cuò) /
- 校驗(yàn)字段
Abstract: For the protocol headers of wireless network data prone to errors, this paper puts forward with a bit-flip subset restriction header recovery algorithm after studying the one based on Cyclic Redundancy Check (CRC). A constraint subset of the received vector centric is set up to narrow the search space by exploiting the confidence information of each bit, overcoming the defect of high complexity of the former header recovery algorithm. Then, the theatrical analysis and experimental verification about the value range of the test vectors length are done combining the models of wireless signal and wireless channel. The simulation results show that this method can maintain the well performance with a low computing cost, adjusting the test vectors length towards wireless signals with different Signal to Noise Ratio (SNR). -
Woo G R, Kheradpour P, Shen D, et al.. Beyond the bits: cooperative packet recovery using physical layer information [C]. Proceedings of the ACM Internet Conference on Mobile Computing and Network, Quebec, Canada, 2007: 147-158. Aman M N, Sikdar B, and Chan W K. Efficient packet recovery in wireless networks[C]. Proceedings of the Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 2014: 1791-1796. Wang S S, Sheu S T, Lee Y H, et al.. CPR: a CRC-based packet recovery mechanism for wireless networks[C]. Proceedings of the Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013: 321-326. Duhamel P and Kiffer M. Joint Source-channel Decoding: a Cross-layer Perspective with Applications in Video Broadcasting[M]. UK, Academic Press, 2009: 193-246. 施里濤, 李歐, 王曉梅, 等. 一種高能效的無(wú)線傳感器網(wǎng)絡(luò)自主容錯(cuò)機(jī)制[J]. 電路與系統(tǒng)學(xué)報(bào), 2013, 18(2): 102-107. Shi L T, Li O, Wang X M, et al.. An active fault-tolerant scheme with high energy efficiency in wireless sensor networks[J]. Journal of Circuits and Systems, 2013, 18(2): 102-107. Schmid F, Orlear D, and Wehrle K. A heuristic header error recovery scheme for RTP[C]. Proceedings of the Wireless On-demand Network Systems and Services (WONS), Alberta, Canada, 2013: 186-190. Kiffer M and Duhamel P. Joint protocol and channel decoding: an overview[C]. Proceedings of the Future Network Mobile Summit, Florence, Italy, 2010: 1-16. Marin C, Leprovost Y, and Kiffer M. Robust MAC-lite and soft header recovery for packetized multimedia transmission [J]. IEEE Transactions on Communications, 2010, 58(3): 775-782. Meriaux F and Kiffer M. Robust IP and UDP-lite header recovery for packetized multimedia transmission[C]. Proceedings of the International Conference on Acoustics, Speech and Signal Processing(ICASSP), Texas, USA, 2010: 2358-2361. Chase D. Class of algorithms for decoding block codes with channel measurement information[J]. IEEE Transactions on Information Theory, 1972, 18(1): 170-181. 黨小宇, 陶靜, 虞湘賓, 等. 一種低復(fù)雜度的Turbo乘積碼自適應(yīng)Chase譯碼算法[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 739-743. Dang X Y, Tao J, Yu X B, et al.. A low-complexity adaptive chase decoding algorithm for turbo product code[J]. Journal of Electronics Information Technology, 2014, 36(3): 739-743. Wolf J K. Efficient maximum likelihood decoding of linear block codes using a trellis[J]. IEEE Transactions on Information Theory, 1978, 24(1): 76-80. Esmaeili M, Alampour A, and Gulliver T A. Decoding binary linear block codes[J]. IEEE Transactions on Communications, 2013, 61(6): 2138-2144. Argon C and McLaughlin S W. An efficient chase decoder for turbo product codes[J]. IEEE Transactions on Communications, 2004, 52(6): 896-898. 張金成, 彭華, 趙國(guó)慶. 信噪比估計(jì)算法研究[J]. 信息工程大學(xué)學(xué)報(bào), 2011, 12(5): 535-542. Zhang J C, Peng H and Zhao G Q. Research on SNR estimation algorithm[J]. Journal of Information Engineering University, 2011, 12(5): 535-542. 韓博, 吳杰, 許華, 等. 基于相關(guān)向量機(jī)的信噪比估計(jì)算法[J]. 通信學(xué)報(bào), 2013, 34(4): 201-206. Han B, Wu J, Xu H, et al.. New SNR estimation algorithm based on relevance vector machine[J]. Journal on Communications, 2013, 34(4): 201-206. 馮戰(zhàn), 鄭海昕, 秦銘晨. AWGN 與 Rayleigh 信道下TPC性能仿真研究[J]. 無(wú)線電工程, 2013, 43(9): 7-9. Feng Z, Zheng H X, and Qin M C. Performance simulation and research on turbo product codes over AWGN and Rayleigh channels[J]. Ratio Engineering, 2013, 43(9): 7-9. 鄭賀, 陸佩忠, 胡捍英. 基于二分圖的乘積碼迭代譯碼算法[J]. 電子與信息學(xué)報(bào). 2006, 28(1): 86-90. Zheng H, Lu P Z, and Hu H Y. Iterative decoding algorithm for product codes based on bipartite graphs[J]. Journal of Electronics Information Technology, 2006, 28(1): 86-90. IEEE Std 802.11-2007. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. 2007. -