基于拓撲統(tǒng)計距離的航跡抗差關(guān)聯(lián)算法
doi: 10.11999/JEIT140244 cstr: 32379.14.JEIT140244
基金項目:
國家自然科學基金(61032001)和山東省自然科學基金(ZR2012FQ004)資助課題
Anti-bias Track Association Algorithm Based on Topology Statistical Distance
-
摘要: 傳感器觀測目標的拓撲信息可用于解決系統(tǒng)誤差下的航跡關(guān)聯(lián)問題,但傳統(tǒng)方法對航跡信息利用不足且難以適應(yīng)傳感器虛警和漏報的情形。論文提出一種基于拓撲統(tǒng)計距離的航跡抗差關(guān)聯(lián)算法,首先轉(zhuǎn)換目標狀態(tài)估計及其協(xié)方差以得到目標參照系下的拓撲描述;然后在推導(dǎo)拓撲統(tǒng)計距離的基礎(chǔ)上,進行全局最優(yōu)關(guān)聯(lián);最后以目標參照系下鄰居目標關(guān)聯(lián)對的平均統(tǒng)計距離作為參照目標間的關(guān)聯(lián)度,根據(jù)雙門限準則完成參照目標的關(guān)聯(lián)判決。仿真結(jié)果表明,在密集編隊目標、隨機分布目標和傳感器存在虛警漏報條件下,該算法的性能明顯優(yōu)于傳統(tǒng)方法。
-
關(guān)鍵詞:
- 航跡關(guān)聯(lián) /
- 系統(tǒng)誤差 /
- 拓撲統(tǒng)計距離 /
- 抗差
Abstract: The topology information of the targets observed by sensors can be used to solve the track association problem under the condition of systematic bias. However, the traditional algorithms dont make full use of track information and are not fit for the presence of sensors false alarm and missing detect. An anti-bias track association algorithm based on topology statistical distance is proposed. First, the target state estimation and covariance is converted to acquire the topology description in the coordinates of the reference target. Then the global optimization association is realized based on the derivation of topology statistical distance. Finally, the average statistic distance of neighboring target association pairs in the coordinates of the reference target is applied as the association degree of the reference targets, and the reference targets association judgment is accomplished according to the double threshold rule. The simulation results show that the performance of the proposed algorithm is apparently better than the traditional algorithm under the conditions of dense formation, random distributed targets and the presence of sensors false alarm and missing detection.-
Key words:
- Track association /
- Systematic bias /
- Topology statistical distance /
- Anti-bias
-
計量
- 文章訪問數(shù): 2401
- HTML全文瀏覽量: 179
- PDF下載量: 535
- 被引次數(shù): 0