一種基于Dirichelt過程隱變量支撐向量機(jī)模型的目標(biāo)識別方法
doi: 10.11999/JEIT140129 cstr: 32379.14.JEIT140129
基金項(xiàng)目:
國家自然科學(xué)基金(61372132, 61271024, 61322103),新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-13-0945),全國優(yōu)秀博士學(xué)位論文作者專項(xiàng)資金(FANEDD-201156)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助課題
A Target Recognition Method Based on Dirichlet Process Latent Variable Support Vector Machine Model
-
摘要: 在目標(biāo)識別中,對于樣本數(shù)較多且分布復(fù)雜的數(shù)據(jù),若將所有訓(xùn)練樣本用來訓(xùn)練一個(gè)單一的分類器,會增加分類器的訓(xùn)練復(fù)雜度,且容易忽視樣本的內(nèi)在結(jié)構(gòu),不利于分類。因此人們提出了混合專家系統(tǒng)(ME),即將訓(xùn)練樣本集劃分為多個(gè)訓(xùn)練樣本子集,并在每個(gè)子集上單獨(dú)訓(xùn)練分類器。但是傳統(tǒng)ME系統(tǒng)需要人為確定專家個(gè)數(shù),并且每個(gè)子集的學(xué)習(xí)獨(dú)立于后端的任務(wù),如分類。該文提出一種基于Dirichlet過程(DP)混合隱變量(LV)支持向量機(jī)(SVM)模型(DPLVSVM)的目標(biāo)識別算法,采用DP混合模型自動確定樣本聚類個(gè)數(shù),同時(shí)每個(gè)聚類中使用線性隱變量SVM(LVSVM)進(jìn)行分類。不同于以往算法,DPLVSVM 將聚類過程和分類器的訓(xùn)練過程聯(lián)合優(yōu)化,保證了各個(gè)子集中樣本的分布上的一致性和可分性,而且可以利用Gibbs采樣技術(shù)對模型參數(shù)進(jìn)行簡便有效的估計(jì)。基于人工數(shù)據(jù)集、公共數(shù)據(jù)集以及雷達(dá)實(shí)測數(shù)據(jù)的實(shí)驗(yàn)驗(yàn)證了該文方法的有效性。
-
關(guān)鍵詞:
- 目標(biāo)識別 /
- 混合專家系統(tǒng) /
- Dirichlet過程混合模型 /
- 隱變量支持向量機(jī)分類器
Abstract: In target recognition community, when dealing with large-scale and complex distributed data, it is very expensive to train a classifier using all input data and the underlying structure of the data is ignored. To overcome these limitations, the Mixture-of-Experts (ME) system is proposed, which partitions the input data into several clusters and learns a classifier for each cluster. However, in the traditional ME system, the number of experts are fixed in advance and clustering procedure and the classification tasks are de-coupled. To deal with these problems, a Dirichlet Process mixture of Latent Variable Support Vector Machine (DPLVSVM) is proposed. In DPLVSVM model, the number of clusters is chosen automatically by DP mixture model, and the linear Latent Variable SVMs (LVSVM) are employed in each cluster. Different from previous algorithms, in DPLVSVM, the clustering procedure and LVSVM are jointly learned to gain infinite discriminative clusters. And the parameters can be inferred simply and effectively via Gibbs sampling technique. Based on the experimental data obtained from the synthesized dataset, Benchmark datasets and measured radar echo data, the effectiveness of proposed method is validated. -
計(jì)量
- 文章訪問數(shù): 2123
- HTML全文瀏覽量: 114
- PDF下載量: 780
- 被引次數(shù): 0