多個具有非零均值復(fù)乘性噪聲的復(fù)諧波信號循環(huán)估計量的性能分析
PERFORMANCE ANALYSIS OF CYCLIC ESTIMATORS FOR MULTIPLE HARMONICS IN COMPLEX NONZERO MEAN MULTIPLICATIVE NOISES
-
摘要: 從雷達(dá)等探測系統(tǒng)需要的頻率估計出發(fā),文中研究了利用循環(huán)平穩(wěn)方法估計多個具有非零均值隨機(jī)乘性噪聲的復(fù)諧波信號參數(shù)的方法,并分析了其漸近統(tǒng)計性能,結(jié)果表明循環(huán)均值可用來恢復(fù)多個具有任意分布的非零均值有色乘性噪聲的復(fù)諧波信號,且所得的諧波參數(shù)估計的均方差與相應(yīng)的Cramer-Rao界具有相同的數(shù)量級。模擬結(jié)果驗證了所得結(jié)果的正確性。
-
關(guān)鍵詞:
- 循環(huán)估計量; 性能分析; 乘性隨機(jī)噪聲; 諧波恢復(fù)
Abstract: The concern here is retrieval of multiple tone harmonics observed in complex-valued multiplicative noises with nonzero mean. Cyclic mean statistics have proved to be useful for harmonic retrieval in the presence of complex-valued multiplicative noises with nonzero mean of arbitrary colors and distributions. Performance analysis of cyclic estimators is carried through and large sample variance expressions of the cyclic estimators are derived. Simulations validate the large sample performance analysis. -
Zhou G, Giannakis G B. Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators. IEEE Trans. on SP, 1995, SP-43(6): 1445-1460.[2]Zhou G, Giannakis G B. Harmonics in Gaussian multiplicative and additive noise: Cramer-Rao bounds. IEEE Trans. on SP, 1995, SP-43(5): 1217-1231.[3]Van Trees H L. Detection, Estimation and Modulation Theory: Part Ⅲ, Radar-Sonar Signal Processing and Gaussian Signals in Noise, New York: Wiley, 1971, ch. 9-11.[4]Picinbono B. Second-order complex random vectors and normal distributions. IEEE Trans. on[5]SP: 1996, SP-44(10): 2637-2640. -
計量
- 文章訪問數(shù): 2093
- HTML全文瀏覽量: 120
- PDF下載量: 400
- 被引次數(shù): 0