三維非均勻介質(zhì)成像問題的區(qū)域分解方法
Domain decomposition method applied to three-dimensional inhomogeneous media imaging
-
摘要: 在利用數(shù)值方法分析非均勻介質(zhì)問題時,容易生成大型系數(shù)矩陣,從而在求解時常常造成計算機內(nèi)存不足或者計算時間過長。該文利用區(qū)域分解方法對三維非均勻介質(zhì)成像問題進行分析,通過將求解區(qū)域劃分為幾個子區(qū)域,在子區(qū)域上以迭代求解子問題的方式解決以上問題。文中給出的迭代收斂速度曲線證明區(qū)域分解算法的收斂速度很快。該文對一些復(fù)雜的非均勻介質(zhì)問題給出了模擬測量成像的結(jié)果。
-
關(guān)鍵詞:
- 非均勻介質(zhì); 區(qū)域分解方法; 成像; 數(shù)值分析
Abstract: When numerical methods are used to solve the inhomogeneous media problems, generally, the large coefficient matrixes are generated. This results in the shortage of memory or very long computing time. In this paper, the domain decomposition method is applied to three-dimensional inhomogeneous media imaging. By means of dividing the domain into a few subdomains and iteratively solving the small problems on these subdomains, the large problem can be efficiently solved. The iterative curve shows the fast convergence rate. The imaging results of some complex inhomogeneous media problems are given in this paper. -
P.P. Silvester, R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge, Cambridge University Press, 1990, chapter 9. [2]金建銘著(美),王建國譯,電磁場有限元方法,西安,西安電子科技大學(xué)出版社,1998,第五章.[2]高本慶,時域有限差分法,北京,國防工業(yè)出版社,1995,第二章.[3]J.H. Bramble, J. E. Pasciak, A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring I, Mathematics of Computation, 1986, 46(174), 361-369.[4]呂濤,石濟民,林振寶,區(qū)域分解算法--偏微分方程數(shù)值解新技術(shù),北京,科學(xué)出版社,1997,205-223.[5]陳愛新,聶在平,二維位場重疊型區(qū)域分解方法,電波科學(xué)學(xué)報,1998,13(4),382-387.[6]陳愛新,聶在平,二維位場非重疊區(qū)域分解方法,電波科學(xué)學(xué)報,1999,14(增),244-247. -
計量
- 文章訪問數(shù): 2145
- HTML全文瀏覽量: 145
- PDF下載量: 453
- 被引次數(shù): 0