快速傅氏變換的一個改進(jìn)算法
AN IMPROVED ALGORITHM FOR FFT
-
摘要: 正 我們知道,對于N=2點(diǎn)的復(fù)數(shù)離散序列,快速算法能以(N/2)次復(fù)數(shù)乘法實(shí)現(xiàn)其傅氏變換,比N2次復(fù)數(shù)乘法的實(shí)現(xiàn)方法,運(yùn)算次數(shù)大為減少,速度大為提高。這對數(shù)值計(jì)算和數(shù)字信號處理技術(shù)都有重大的意義。快速傅氏變換(FFT)出現(xiàn)雖僅有15年,但已有了很大的發(fā)展,在實(shí)踐中已得到廣
-
關(guān)鍵詞:
Abstract: An improved algorithm for FFT is proposed. The Fourier transforms of a complex discrete sequence with N = 2r points are performed by the operation of (-3) N/2 times of multiplication. The speed of the algorithm is faster than the conventional FFT. The speed up ratio is about 3/(-3). -
J. Cooley and J. Tukey, Math. Comput.,19(1965), 297.[2]S. Winograd, Proc. Nat, Acad. Sci. U.S.A.,73(1976), 100.[3]H. F. Silverman, IEEE Trans. on Assp,ASSP-25(1977), 242.[4]V. P. Kolba and T. W. Parks, IEEE Trans.on Assp, ASSP-25(1977), 281.[5]田中公男、青山友紀(jì),情報(bào)處理,19(1978), 1091. -
計(jì)量
- 文章訪問數(shù): 1959
- HTML全文瀏覽量: 95
- PDF下載量: 360
- 被引次數(shù): 0