一種多譜線增強(qiáng)器
A MULTIPLE LINE ENHANCER
-
摘要: 用奇異值分解界定信號和噪聲子空間的困難之處,在于有效秩的確定。過去常用的辦法是采用固定的閾值確定有效秩,盡管其物理意義明顯,但由于缺乏自適應(yīng)性,影響了子空間法在譜線增強(qiáng)中的應(yīng)用。本文針對這一缺陷,提出一種根據(jù)含噪諧波信號的時(shí)頻分布,用聚類方法確定有效秩的算法。仿真實(shí)驗(yàn)的結(jié)果表明了這種算法對一類多譜線增強(qiáng)問題非常有效。Abstract: A general difficulty of using singular value decomposition (SVD) to split signal and noise subspaces is in the right choice of effective rank. The commonly used method toward this end is to use a fixed threshold. Yet despite its apparent physical significance, the lack of adaptability has strongly limited the popularity of subspace approach in line enhancement. In order to surmount this drawback, a cluster method based algorithm for determining the effective rank is proposed in accordance with the a priori information obtained from the time-frequency distribution of the noisy sinusoids. Simulation results show that the methodology advocated is effective for solving a class of multiple line enhancement problems.
-
張賢達(dá).現(xiàn)代信號處理.北京:清華大學(xué)出版社,1995,197-202[2]Bickel P J. Minimax Estimation of a Normal Mean Subject to Doing Well at a Point. In: Rizvi M H, Rustagi J S, Siegmund, eds. Recent Advances in Statistics. NY: Academic Press, 1983,511-528.[3]Donoho D L, Johnstone I M. Ideal spatial adaption by wavelet shrinkage[J].Biometrika.1994,81(3):425-455[4]Qian S, Chen D. Joint Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1996,6-7.[5]Griffin D W, Lim J S. Signal estimation from modified short-time Fourier transform. IEEE Trans.on Acoust., Speech, Sig., Proc., 1984, ASSP-32(4): 236-243.[6]Nawab S H, Quatieri T F. Short-Time Fourier Transform. In: Lim J S, Oppenheim A V, eds.Advanced Topics in Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1988, 289-337.[7]鄒紅星,李衍達(dá).基于時(shí)頻面旋轉(zhuǎn)的線性調(diào)頻信號增強(qiáng).清華大學(xué)學(xué)報(bào)(自然科學(xué)版),1999,39(7):103-106. -
計(jì)量
- 文章訪問數(shù): 1931
- HTML全文瀏覽量: 63
- PDF下載量: 457
- 被引次數(shù): 0