一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種用于非線性復雜系統(tǒng)辨識的自適應模糊神經(jīng)網(wǎng)絡

李映 白本督 焦李成

李映, 白本督, 焦李成. 一種用于非線性復雜系統(tǒng)辨識的自適應模糊神經(jīng)網(wǎng)絡[J]. 電子與信息學報, 2001, 23(4): 332-337.
引用本文: 李映, 白本督, 焦李成. 一種用于非線性復雜系統(tǒng)辨識的自適應模糊神經(jīng)網(wǎng)絡[J]. 電子與信息學報, 2001, 23(4): 332-337.
Li Ying, Bai Bendu, Jiao Licheng. An Adaptive Fuzzy Neural Network for Identification of the Complicated Noulinear System[J]. Journal of Electronics & Information Technology, 2001, 23(4): 332-337.
Citation: Li Ying, Bai Bendu, Jiao Licheng. An Adaptive Fuzzy Neural Network for Identification of the Complicated Noulinear System[J]. Journal of Electronics & Information Technology, 2001, 23(4): 332-337.

一種用于非線性復雜系統(tǒng)辨識的自適應模糊神經(jīng)網(wǎng)絡

An Adaptive Fuzzy Neural Network for Identification of the Complicated Noulinear System

  • 摘要: 該文提出一種用于復雜的非線性未知系統(tǒng)辨識的混合神經(jīng)網(wǎng)絡模型自適應模糊神經(jīng)網(wǎng)絡(AFNN)。AFNN網(wǎng)絡結構簡潔,具有通用逼近的特性,能夠克服由于突變點的存在而對系統(tǒng)辨識所帶來的誤差,提高整個系統(tǒng)的辨識精度。對空空導彈攻擊區(qū)辨識的仿真結果驗證了AFNN網(wǎng)絡的有效性。
  • K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural network, IEEE Trans. on Neural Network, 1990, 1(1), 4-27.[2]K.J. Hunt, Neural networks for control systems-A survey, IEEE Trans. on Neural Networks, 1993, 3(5), 752-760.[3]J.C. Bezdek, Pattern recognition with fuzzy objection function algorithms, New York, Plenum, 1981, Ch.3. [4]L.X. Wang, M. Mendel, Fuzzy basis function, universal approximation, and orthogonal leastsquares learning, IEEE Trans. on Neural Network, 1992, 3(5), 807-814.[4]Li Rui-Ping, M. Mukaidono, Fuzzy modeling and clustering neural network, Control and Cyber netics, 1996, 25(2), 225-242.[5]A. Bastian, Sequential fuzzy system identification, Control and Cybernetics, 1996, 25(2), 199-223.[6]A. Bastian, An effective way to generate neural network structures for function approximation, Mathware, 1994, 1(1), 139-161.[7]P.J. Angeline, et al., An evolutionary algorithm that construct recurrent neural networks, IEEE Trans. on Neural Network, 1994, 5(1), 39-53.
  • 加載中
計量
  • 文章訪問數(shù):  2173
  • HTML全文瀏覽量:  143
  • PDF下載量:  425
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  1999-06-24
  • 修回日期:  1999-11-19
  • 刊出日期:  2001-04-19

目錄

    /

    返回文章
    返回