復(fù)數(shù)旋轉(zhuǎn)碼及其對偶碼的超限譯碼
DECODING BEYOND THE BOUND OF THE COMPLEX-ROTARY CODES AND ITS DUAL CODES
-
摘要: 本文討論了復(fù)數(shù)旋轉(zhuǎn)碼及其對偶碼的超限譯碼能力,得到了t=(P+1)/2時復(fù)數(shù)旋轉(zhuǎn)碼可以糾Ct+1p2+p(p-1)-p2Ctp+1個t+1錯;其對偶碼可以糾Ct1+1p2+2t1p-2tpCt1+1p+1個t1+1錯,這里t1=[(p+1)/2]-1, p為素數(shù)。
-
關(guān)鍵詞:
- 復(fù)數(shù)旋轉(zhuǎn)碼; 對偶碼; 超限譯碼
Abstract: The capabilities of decoding beyond the bound of the. complex-rotary codes and its dual codes are analysed. It is obtained that the complex-rotary codes with t = (p+1)/2 can correct Ct+1p2+p(p-1)-p2Ctp+1 errors of (t +1) and its dual codes can correct Ct1+1p2+2t1p-2tpCt1+1p+1 errors of (t1+1), where t1= [(p+1)/2]-1 and p is a prime. -
E. R. Berlekamp,Algebraic Coding Theory, McGraw-Hill Book Company,1968.[2]C.R. P. Hartmann, IEEE Trans. on IT, IT-26 (1972), 441-444.[3]Jin Fan, An Investigation on New Complex-Rotary Code, A paper presented at IEEE 1985 Jnternational Symposium On Information Theory, Brighton, England,(1985), 1-8.[4]靳蕃,通信學(xué)報,1986年,第2期,62-69.[5]靳蕃,鐵道學(xué)報,1986年,第1期,6-64.[6]S. Lin著,陳太一譯,糾錯碼人門,人民郵電出版社,1976年.[7]袁毅,復(fù)數(shù)旋轉(zhuǎn)碼性能的研究及計算機模擬分析,西南交通大學(xué)碩士論文,1988. -
計量
- 文章訪問數(shù): 2049
- HTML全文瀏覽量: 98
- PDF下載量: 306
- 被引次數(shù): 0