基于非線性小波變換的圖像邊緣分解方法
Nonlinear Wavelet Transform Based Image Edge Decomposition
-
摘要: 圖像邊緣分解重建過程中,為解決重建后的邊緣振蕩問題,提出無需對小波變換躍變點兩側(cè)延拓,采用非線性變換把能量集中到低頻分量上,用精細尺度上小波變換模極大值對躍變點進行奇異性檢測,用較少存儲空間和計算量即可有效克服重建圖像邊緣振蕩問題。
-
關(guān)鍵詞:
- 圖像壓縮; 邊緣振蕩; 非線性小波
Abstract: Avoiding oscillation phenomenon which occurs in analysis and reconstruction of image edges, an application without extrapolation both sides is proposed. Image energy is concentrated in low frequency by using nonlinear transform, and the exact jumps location are detected by local maximum of wavelet transform in fine scale. Non-oscillation edges of reconstructed image are received with less storage space and computing time. -
Starck J L, Murtagh, F, Bijaoui A. Image processing and data analysis[J]. Astronomy and Astrophysics Supplement Series, 2000:139- 149.[2]Donoho D. Wedgelets: Nearly-minimax estimation of edges[J].Annals of Stat.1999, 27(3):859-[3]Candes E, Donoho D. New tight frames of curvelets and optimal representations of objects with C2 Singularities[R]. Technical Report, Stanford University, 2002.[4]Chan T F. Adaptive ENO-wavelet transforms for discontinuous functions[R]. in 12th Domain Decomposition Conf, Paris, June 26 - 28, 1996, number 219 in Lecture Notes: 241 - 245.[5]Claypoole R L, Davis G, Sweldens W. Nonlinear wavelet transforms for image coding[R]. in Proc.31st Asilomar Conf,Pacific Grove, CA, 1997:301 - 308.[6]陳逢時.子波變換理論及其在信號處理中的應(yīng)用[M].北京:國防工業(yè)出版社,1998:165-173.[7]Zou Hao-min. Wavelet transform and PDE techniques in image compression [D]. Doctor paper, University of California, 2000.[8]Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [R]. Tech. Rep. Bell Laboratories, 1996. -
計量
- 文章訪問數(shù): 2019
- HTML全文瀏覽量: 100
- PDF下載量: 549
- 被引次數(shù): 0