董華春,宗成閣,權(quán)太范,高頻雷達(dá)海洋回波信號(hào)的混沌特性分析,電子學(xué)報(bào),2000,28(3),25-28.[2]H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge, Cambridge University Press,2000, chapter 1.[3]郭雙冰,肖先賜,幾種混沌跳頻碼的混沌動(dòng)力學(xué)特性及預(yù)測(cè)分析,系統(tǒng)工程與電子技術(shù),2000,22(12),29-32.[4]F. Takens, Detecting strange attractors in fluid turbulence, 1981, Dynamical Systems and Turbulence, eds., D. Rand, L. S. Young, (Berlin, Springer), 366-381.[5]袁堅(jiān),肖先賜,低信噪比下的狀態(tài)空間重構(gòu),物理學(xué)報(bào),1997,46(7),1290-1299.[6]袁堅(jiān),肖先賜,淹沒在噪聲中的混沌信號(hào)的最大李亞普諾夫指數(shù)的提取,電子學(xué)報(bào),1997,25(10),134-139.[7]N.H. Packard, J. P. Crutchfield, J. D. Farmer, R. S. Shaw, Geometry from a time series, Phys.Rev. Lett., 1980, 45(9), 712-716.[8]J.P. Eckmann, D. Ruelle, Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamic systems.[J]. Physica D.1992,56:185-[9]J. Theiler, Spurious dimension from correlation algorithms applied to limited time-series data,Phys. Rev. A, 1986, 34(3), 2427-2432.[10]M.T. Rosenstein, J. J. Collins, C. J. D. Luca, A practical method for calculating largest Lyapunov exponents from small data sets.[J]. Physica D.1993,65:117-[11]P. Grassberger, I. Procaccia, Measuring the strangeness attractors, Phys. Rev. Lett., 1983, 50(5),346-349.[12]肖先賜,混沌信號(hào)處理,電子對(duì)抗,2002,83(2),20-30.[13]G. Sugihara, R. M. May, Nonlinear forecasting as a way of distinguishing chaos from measure error in time series, Phys. Rev. Lett., 1990, 64(9), 734-741.
|