一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

具有任意激活函數(shù)的時(shí)延神經(jīng)元方程的Hopf分岔

周尚波 廖曉峰 虞厥邦

周尚波, 廖曉峰, 虞厥邦. 具有任意激活函數(shù)的時(shí)延神經(jīng)元方程的Hopf分岔[J]. 電子與信息學(xué)報(bào), 2002, 24(9): 1209-1217.
引用本文: 周尚波, 廖曉峰, 虞厥邦. 具有任意激活函數(shù)的時(shí)延神經(jīng)元方程的Hopf分岔[J]. 電子與信息學(xué)報(bào), 2002, 24(9): 1209-1217.
Zhou Shangbo, Liao Xiaofeng, Yu Juebang. Hopf bifurcation for delayed neuron equation with arbitrary activation function[J]. Journal of Electronics & Information Technology, 2002, 24(9): 1209-1217.
Citation: Zhou Shangbo, Liao Xiaofeng, Yu Juebang. Hopf bifurcation for delayed neuron equation with arbitrary activation function[J]. Journal of Electronics & Information Technology, 2002, 24(9): 1209-1217.

具有任意激活函數(shù)的時(shí)延神經(jīng)元方程的Hopf分岔

Hopf bifurcation for delayed neuron equation with arbitrary activation function

  • 摘要: 該文研究了一個(gè)帶時(shí)延的神經(jīng)元方程,分析相應(yīng)的線性化方程的超越特征方程,研究了這個(gè)模型的線性穩(wěn)定性,對(duì)于神經(jīng)元來(lái)自過(guò)去狀態(tài)的抑制影響,作者發(fā)現(xiàn)當(dāng)這個(gè)影響值變化并通過(guò)一個(gè)臨界序列時(shí),這個(gè)模型會(huì)出現(xiàn)Hopf分岔,利用規(guī)范形式理論和中心流形定理,解析確定了周期解的穩(wěn)定性與Hopf分岔方向,數(shù)值例子也證實(shí)了所得結(jié)論。
  • K. Gopalsmy, I. Leung, Delay induced periodicity in a neural network of excitation and inhibition.[J].Physica D.1996,89:395-[2]K. Gopalsmay, Issic K. C. Leung, Convergence under dynamical thresholds with delays, IEEETrans. on Neural Networks, 1994, NN-8(2), 341-348.[3]L. Olien, J. Belair, Bifurcations, stability and monotonicity properties of a delayed neural networkmodel.[J]. Physica D.1997,102:349-[4]J. Belair, S. Dufour, Stability in a three-dimensional system of delay-differential equations, Can.Appl. Math. Quart., 1996, 4(2), 135-156.[5]廖曉峰,吳中福,虞厥邦,帶分布時(shí)延神經(jīng)網(wǎng)絡(luò),從穩(wěn)定到振蕩再到穩(wěn)定的動(dòng)力學(xué)現(xiàn)象,電子科學(xué)學(xué)刊,2001,23(7),687-692.[6]王炎,廖曉峰,吳中福,虞厥邦,一個(gè)帶時(shí)延神經(jīng)網(wǎng)絡(luò)的分岔現(xiàn)象研究,電子科學(xué)學(xué)刊,2000,22(6),972-977.[7]Xiaofeng Liao, Zhongfu, Juebang Yu, Hopf bifurcation analysis of a neural system with a continuously distributed delay, International Symposium on Signal Processing and Intelligent System,Guangzhou, China, Nov. 1999. [8]Xiaofeng Liao, Zhongfu, Juebang Yu, Stability switches and bifurcation analysis of a neuralnetwork with continuously distributed delay, IEEE Trans. on SMC-I, 1999, SMC-I-29(6), 692-696.[8]Xiaofeng Liao, Kwok-wo Wong, Zhongfu Wu, Bifurcation analysis in a two-neuron system withcontinuously distributed delays, Accepted by Physical D, to appear. [10]K. Jack Hale, Sjoerd M. Verduyn Lunel, Introduction to Functional Differential Equations, NewYork, Springer-verlag, Inc., 1993.[9]B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation,London, Cambridge, Univ, Press, 1981.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  2286
  • HTML全文瀏覽量:  112
  • PDF下載量:  636
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2000-06-29
  • 修回日期:  2000-12-21
  • 刊出日期:  2002-09-19

目錄

    /

    返回文章
    返回