TCM信號序列的自由空間距離的矩陣算法
A MATRIX ALGORITHM FOR COMPUTING THE FREE SPACE DISTANCE OF TCM SIGNAL SEQUENCE
-
摘要: 本文研究了TCM信號序列的自由空間距離的計算問題,提出一種新的算法矩陣算法,同時在理論上解決了計算TCM信號序列的自由空間距離所需狀態(tài)轉(zhuǎn)移次數(shù)問題。此矩陣算法的推導(dǎo)基于Viterbi算法,它是Viterbi算法的矩陣實現(xiàn)。與已有的算法相比,此算法的優(yōu)點在于:(1)給出了顯式解,使得計算的復(fù)雜度相對減小。(2)對空間距離的變化具有更強的適應(yīng)性。作為實例,給出了高斯信道和衰落信道上的一些TCM信號序列的自由空間距離的計算結(jié)果。
-
關(guān)鍵詞:
- 網(wǎng)格編碼調(diào)制; 矩陣算法; 衰落信道
Abstract: The problem of computing the free distance of TCM signal sequence has been discussed, a new algorithm--the matrix algorithm, is proposed, and the estimation problem of state transition number required for computing the free distance of TCM signal sequence has been theoretically solved. The matrix algorithm is derived from the Viterbi algorithm, and is an implementation of Viterbi algorithm in the form of matrix. Compared with other algorithms, the matrix algorithm gains two advantages: (1) The explicit solution, and its relatively less complexity. (2) more flexible ability to the signal space distance variation. As some examples, the results of some TCM signal sequence on additive Gaussian white noise(AWGN) channel and fading channels have been presented. -
Rouanne M, Costello D J. An algorithm for computing the distance sprectrum of trellis codes. IEEE J. of SAC, 1989, SAG7(6): 929-940.[2]Biglieri E, Divsalar D,et al. Introduction to trellis-coded modulation with applications. New York:[3]Macmillan Publishing Company, 1991: 125-145.[4]樊平毅,曹志剛.廣義準(zhǔn)正則格形碼距離譜的計算中國通信學(xué)會第四屆年會,北京:1995,741-745.[5]Ungerboeck G. Channel coding with multilevel/phase signals. IEEE Trans. on IT, 1988, IT-34(5): 1123-1151.[6]Divalar D, Simon M K. The design of trellis codes for fading channels. IEEE Trans. on C, 1988, 636(9): 1004-1012. -
計量
- 文章訪問數(shù): 2532
- HTML全文瀏覽量: 166
- PDF下載量: 470
- 被引次數(shù): 0