n元H-布爾函數(shù)(Ⅱ)
ON THE H-BOOLEAN FUNCTIONS(Ⅱ)
-
摘要: 本文是楊義先以前工作(1988)的繼續(xù),利用特征矩陣分析n元H-布爾函數(shù)的結(jié)構(gòu)性質(zhì),求出了目前為止最好的計數(shù)下界。
-
關(guān)鍵詞:
- H-布爾函數(shù); 密碼特性; 構(gòu)造和計數(shù)
Abstract: As the second part of author s serial research (1988), the cipher significant and structure properties of H-Boolean functions are investigated in further by the characteristic matrix. The best updated lower bounds are found for the enumeration of H-Boolean functions. -
楊義先.N元H-布爾函數(shù).北京郵電學院學報,1988,11(3):1-9.[2]楊義先,胡正名.4維2階Hadamard矩陣的分類.系統(tǒng)科學與數(shù)學,1987, 7(1): 40-46.[3]Shlichta P. Higher Dimensional Hadamard Matrices. IEEE Trans. on IT, 1979, IT-25(5): 825-826,[4]李世群,楊義先.5維2階Hadamard矩陣計數(shù)問題的解決.北京郵電學院學報,1988, 11(2): 17-21.[5]潘新安,楊義先.5維2階Hadamard矩陣的計數(shù).北京郵電學院學報,1987, 10(4): 11-19.[6]Hammer J, Seberry J. Higher dimensional orthogonal designs and applications. IEEE Trans. on IT, 1981, IT-27(6): 772-779.[7]Launey W. A Note on N-dimensional Hadamard matrices of order 2t and Reed-Muuler codes. IEEE[8]Trans. on IT, 1991, IT-37(3): 664-666.[9]楊義先.n維2階Hadamard矩陣.北京郵電學院學報,1991, 11(4): 1-8.[10]楊義先,林須端,胡正名.編碼密碼學.北京:人民郵電出版社,1992, 81-97; 225-229; 589-627. -
計量
- 文章訪問數(shù): 2061
- HTML全文瀏覽量: 174
- PDF下載量: 454
- 被引次數(shù): 0