基于波束輸出的高分辨定向方法及性能分析
A NEW DOA ESTIMATOR BASED ON BEAM OUTPUT
-
摘要: 本文提出一種基于波束輸出的高分辨定向方法。這種方法利用子陣形成子波束,并把該子陣看做為一個等效陣元。然后對多個等效陣元構(gòu)成的新陣列利用目前典型的高分辨算法進(jìn)行定向。我們對均勻線列陣進(jìn)行了計算機(jī)仿真實驗和水池高分辨陣列處理實驗,研究結(jié)果表明,這樣做可以獲得性能上的較大提高。一方面,可提高原高分辨定向算法的估計精度、分辨概率并降低運算時間;另一方面,由于各個等效陣元的輸出是由多個實際陣元輸出加權(quán)平均得來的,因此基于等效陣元構(gòu)成陣列的高分辨定向算法對各種陣列誤差(如陣元位置誤差、陣元指向性的不一致等)變得不十分敏感,從而有利于抑制陣列誤差對高分辨定向算法的影響,對工程應(yīng)用具有較強(qiáng)的適應(yīng)性。文中對各種情況進(jìn)行了較詳細(xì)的統(tǒng)計性能分析與比較。
-
關(guān)鍵詞:
- 高分辨定向技術(shù); 波束形成; 陣列誤差校準(zhǔn)
Abstract: A new DOA estimator based on beam output is presented in this paper. It uses subarray to form beam and regards these subarrays as equivalent sensors. So a new array is generated. Employing original high-resolution DOA estimators, such as MUSIC, on the new array, DOAs are then obtained. Monte Carlo test and underwater high-resolution array processing experiment are made on linear equipspaced array (LEA) to check the performance of the new method. It is shown from the result of tests that the new method possesses some advantages over the original one. First, it improves the estimation precision and resolution of original method; Second, it reduces the burden of computation; Third, the most important one, it becomes not sensitive to various array errors, such as sensors position/phase error, inconsistency of sensors directionality, etc.. So it is promising on engineering application. Statistical performance analysis and underwater experimental results are given in the paper to verify the conclusion. -
Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans. on AP, 1986, AP-34(3): 276-280.[2]Fistas N, Manikas A. A new general global array calibration method. Proc. IEEE ICASSP, Adelaide, Australia: 1994, IV-73-76.[3]賈永康, 保錚, 吳沮. 一種陣列天線陣元位置、幅度及相位誤差的有源校正方法.電子學(xué)報, 1996, 24(3): 47-52.[4]Jianfeng Chen(陳建峰), Jianguo Huang(黃建國). An efficient array calibration method on underwa-[5]ter high resolution direction-finding experiment. Proc. IEEE ICASSP98, Seattle, U.S.A: 1998, UAl.2.[6]Pierre J, Kaveh M. Experimental performance of calibration and direction finding algorithms IEEE Trans. on ASSP, 1991, ASSP-39(2): 114-118.[7]Ng A P C. Direction of arrival estimates in the presence of wavelength; gain, and phase errors. IEEE Trans. on SP, 1995, SP-43(1): 225-232.[8]魏平, 肖先賜. 陣列測向系統(tǒng)中模型誤差的校正方法. 電子科技大學(xué)學(xué)報, 1995, 24(7): 121-126.[9]Ng B C, et al. Sensor-array calibration using a maximum-likelihood approach. IEEE Trans. on AP, 1996, AP-44(6): 827-835.[10]Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm. IEEE Trans. on SP, 1994, SP-42(6): 1519-1526. -
計量
- 文章訪問數(shù): 2168
- HTML全文瀏覽量: 140
- PDF下載量: 570
- 被引次數(shù): 0