一種基于偏微分方程的SAR圖像去噪方法
A New Speckle Noise Removal Method Based on PDE's
-
摘要: 傳統(tǒng)的相干斑噪聲抑制算法在多次迭代后通常會(huì)導(dǎo)致圖像邊緣的模糊,這一直是SAR圖像去噪處理的難點(diǎn)和熱點(diǎn)所在。該文分析了應(yīng)用于圖像處理的各向異性擴(kuò)散方程(PDEs),在其基礎(chǔ)上由最小化問(wèn)題出發(fā),引入棱邊指示子對(duì)圖像的邊緣加以限制,得到新的去噪模型并降之應(yīng)用于SAR圖像的相干斑噪聲去除。與傳統(tǒng)的基于局部統(tǒng)計(jì)量和各向異性濾波器相比,新的算法在棱邊保持和噪聲去除能力均有提高。
-
關(guān)鍵詞:
- 相干斑噪聲抑制; 各向異性擴(kuò)散方程; 棱邊指示子
Abstract: Traditional speckle removal methods generally result in the lost of image features. This paper presents a new approach to edge-preserving smoothing of digital SAR images based on the PDE's. A brief analysis of the principle of anisotropic nonlinear diffusion equation for image restoration is introduced, and then an edge indicator is showed in the final update equation to constrain the image edge, staying as close as possible to the input image and to restore discontinuities, which improve the ability of speckle noise removal. Comparison and experimental result show the new proposed algorithm has high performance. -
Goodman J M. Some fundamental properties of speckle[J]..J Opt.Soc. Am.1976, 66(11):1145-1149[2]Lee J S. Digital image enhancement and noise filtering by using local statistics[J].IEEE Trans. on Pattern Anal. Machine Intell.1980, PAMI-2(2):165-168[3]Lee J S. Refined filtering of image noise using local statistics[J].Comput. Graph. Image Proc.1981, 15(3):380-389[4]Lee J S. Speckle suppression and analysis for synthetic aperture radar. Opt. Eng., 1986, 25(5): 634-643.[5]Frost V S, Stiles J A, Shanmugan K S, Holtzman J C. A model for radar images and its application to adaptive digital filtering of multiplicative noise[J].IEEE Trans. on Pattern Anal. Machine Intell.1982, PAMI-4(2):157-165[6]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans. on Pattern Anal. Machine Intell.1990, 12(7):629-639[7]Mumford D, Shah J.Optimal approximations by piecewise smooth functions and associated variational problems. Comm.Pure Applied. Math. 1989, 42(5): 577-685.[8]鄒謀炎.反卷積和圖像復(fù)原.北京:國(guó)防工業(yè)出版社,2001:248-250.[9]Lazaroaia L. A study in the BV space of denoising-deblurring variational problem. prepubl. No.439, Laboratory J-A. Dieudonne,URA 168 du CNRS, University of Nice-Sophia Antipolis, France,1996.[10]Black M, Sapiro G. Edges as outliers: Anisotropic smoothing using local image statistics. Proceedings of the Scale-Space Conference, Berlin, Springer-Verlag, 1999:58-62. -