基于規(guī)范正交小波的自適應(yīng)均衡器
A NEW KIND OF EQUALIZER BASED ON ORTHONORMAL WAVELETS
-
摘要: 本文在分析傳統(tǒng)均衡器性能的基礎(chǔ)上,提出了一種基于小波分析的均衡器OWBE,用一組規(guī)范正交小波及其對(duì)應(yīng)的一組系數(shù)來(lái)表示均衡器。文中給出了自適應(yīng)算法,并對(duì)算法性能做了簡(jiǎn)要分析.與基于LMS算法的橫向均衡器(LTE)相比,OWBE收斂速度快,而計(jì)算量增加很少,易于實(shí)時(shí)實(shí)現(xiàn).
-
關(guān)鍵詞:
- 均衡器; 小波分析; 自適應(yīng)濾波
Abstract: An orthonormal wavelets based equalizer (OWBE) is presented. The equalizer is represented by a set of orthonormal wavelets and the corresponding coefficients. The paper gives the structure and also the adaption algorithm of the OWBE. Theoretical analysis show that the OWBE convergences faster than the conventional FIR LMS based equalizer (LTE), while the increase in the computational complexity is very little. Several simulations are performed to evaluate the behavior of the OWBE. -
Benedetto S, Biglieri E, Castellini V. Digital Transmission Theory. Englewood Cliffs, NJ: Prentice Hall, 1987, Chap.B.[2]Daubechies I. Orthogonal bases of compactly supported wavelets[J].Comm. Pure Appl. Math.1988, 41:909-996[3]Olivier Rioal. A discrete-time mufti-resolution theory. IEEE Trans. on SP, 1993, SP-41(8): 2591-[4]2606.[5]劉貴忠,等.小波分析及其應(yīng)用.西安:西安電子科技大學(xué)出版社,1992,第二章.[6]Doroslovacki M, et al. Wavelet-based adaptive filtering. In Proc. IEEE ICASSP93, USA:1993, 488-491.[7]Erdol N. Performance of wavelet transform based adaptive filters. In Proc. IEEE ICASSP93, USA: 1993,500-503.[8]Srinath Hosur. Wavelet transform domain LMS algorithm. In Proc. IEEE ICASSP93, USA: 1993, 508-511.[9]Lee J C. Performance of transform-domain LMS adaptive digital filters. IEEE Trans on ASSP, 1986, ASSP-34(3): 499-510.[10]Yamazaki K, et al. Candidate admissible blind equalization algorithm for RAM communication systems. In Proc. ICC92, Chicago: 1992, 351.4.1-351.4.5. -
計(jì)量
- 文章訪問(wèn)數(shù): 1876
- HTML全文瀏覽量: 127
- PDF下載量: 366
- 被引次數(shù): 0