電流連續(xù)性方程離散技術(shù)優(yōu)劣判據(jù)
ASSESSMENT OF THE DISCRETIZATION SCHEME FOR CURRENT CONTINUITY EQUATION
-
摘要: 本文提出了一套判斷電流連續(xù)性方程離散技術(shù)優(yōu)劣的基本判據(jù),為選擇合適的離散方法提供了依據(jù),并根據(jù)這套判據(jù),提出了一種新的有限差分方法。誤差分析和數(shù)值實(shí)驗(yàn)結(jié)果都表明,該方法優(yōu)于不完全滿(mǎn)足基本判據(jù)的SG方法和SUPG方法。
-
關(guān)鍵詞:
- 電流連續(xù)性方程; 離散方法; 基本判據(jù)
Abstract: This paper presents a set of basic criteria to assess discretization schemes, which provides for choosing a proper discretization scheme of current continuity equation. According to the basic criteria, this paper also presents a new finite difference scheme. Both error analysis and numerical results show that the present scheme is superior to the Scharfetter-Gummel (SG) and Streamline Upwind Petrov/Garlerkin (SUPG) schemes in which the basic criteria are not satisfied. -
Schar fetter D L, Gummel H K. IEEE Trans. on ED, 1909, ED-16(1): 64-77.[2]Selberherr S, Schiitz A. Potzl H W. IEEE Trans. on ED, 1980,ED-27(8):[3]40-1547.[4][3][5]Brgler J F, Bank RE, Fichtner W, et al. IEEE Trans. on CAD, 1989, CAD-8(5)-[6]9-489.[7]Bank R E, Rose D J, Fitchner W. IEEE Trans. on ED, 1983, ED-30(9): 1031-1041.[8]Brooks A N, Hughes T J R. Comput. Meth. Ai p1. Mech. Erg., 1982, 32(2): 199-259.[9]He Y, Cao G. IEEE Trans. on CAD, 1991, I:AD-10(12): 1579-1582.[10]Sharma M, Carey G F. IEEE Trans. on CAD, 1989, CAD-8(6):590-597.[11]Tan G L, Yuan X L, Zhang Q M, et al. IEEE Trans. on CAD. 1989, CAD-8(5): 468-478.[12]Leonard B P. Int[J].J. Num. Meth, Fluids.1988, 8(9):1291-1319[13]Rice J G, Schnipke R J. Int. J. Num. Meth. Eng., 1985, 49(2): 313-327.[14]Shemirani F, Jambunathan K. Int[J].J. Num. Meth. Fluids.1992, 14(9):1245-1257[15]Patel M K, Cross M, Markatos N C. int. J. Num. Meth. Eng. 1988, 26(12):2279-2304. -
計(jì)量
- 文章訪問(wèn)數(shù): 2391
- HTML全文瀏覽量: 160
- PDF下載量: 406
- 被引次數(shù): 0