低信噪比圖象邊緣提取的非線性方法
A NONLINEAR METHOD FOR EDGE DETECTION OF LOW SNR IMAGE
-
摘要: 針對(duì)低信噪比圖象的邊緣提取問題,本文提出了一種非線性方法,即利用大窗口平滑去噪性能強(qiáng)與小窗口提取邊緣性能好相結(jié)合的方法,此時(shí)采取大窗口濾波,小窗口中作非線性的微分算子求導(dǎo)。為了避免求導(dǎo)后閾值選取的盲目性,文中提出了一種噪聲引導(dǎo)的閾值確定準(zhǔn)則,并根據(jù)這個(gè)閾值分割圖象。在大窗口濾波中,采用了二維卷積等于兩個(gè)一維卷積級(jí)聯(lián)的技術(shù)壓縮濾波器的存儲(chǔ)空間。最后對(duì)這種方法進(jìn)行了性能評(píng)價(jià),并且給出了實(shí)驗(yàn)結(jié)果。
-
關(guān)鍵詞:
- 圖象處理; 邊緣提取; 非線性微分算子; 指數(shù)濾波器
Abstract: A nonlinear method for detecting the edge of low-SNR image is developed. This method adopts the filtering in large window to smooth the noise and the nonlinear differential operator in small window to detect the edges. A criterion of noise-guided threshold selection is introduced to segment the derivative image so that the threshold can be determined automatically. In large window s filtering, the technique of 2-D convolution implementation by two 1-D convolutions in series is taken to reduce the storage space of the filter. Finally, the performance of this method is evaluated, and experimental results are given. -
D. Marr, E. C. Hildretli, Theory of edge detection, Proc. R. Soc. London. B207, (1980), 187-217.[2]R. M. Haralick, IEEE Trans. on PAMI, PAMI-6(1984)1, 56-68.[3]W. E. L. Grimson, IEEE Trans. on PAMI, PAMI-7(1985)1, 121-127.[4]Shen, S. Castan, An optimal linear operator for edge detection, Proc, CVPR-86, Miami, (1986), 109-114.[5]J. S. Chen, IEEE Trans. on PAMI, PAMI-11(1989)2, 191-198.[6]V. Berzins, Computer Vision, Graphics and Image Processing 27(1984), 195-210.[7]Z. Xu, A further study on error probabilities of Laplacian-Gaussian edge detection, Proc. 8th ICPR, Paris, (1986), 601-603.[8]A, L. D. Beckers, Metingen van Parameters voor Niet-lineaire Objectgrootte-fillters in beelden, Ingenieur's[9]thesis, Department of Applied Physics, Delft University of Technology, Dutch, (1986), 601-603. -
計(jì)量
- 文章訪問數(shù): 2150
- HTML全文瀏覽量: 142
- PDF下載量: 479
- 被引次數(shù): 0